创新的大语言模型对齐调优命令行工具
InstructLab是为大语言模型(LLM)对齐调优设计的创新命令行工具。它采用合成数据方法,支持预训练模型下载、知识技能添加、合成数据生成、模型重训练和评估。工具兼容多种硬件平台,包括Apple M系列、AMD ROCm和NVIDIA CUDA,为LLM优化提供灵活高效的解决方案。
ilab
)
ilab
InstructLab 🐶 uses a novel synthetic data-based alignment tuning method for Large Language Models (LLMs.) The "lab" in InstructLab 🐶 stands for Large-Scale Alignment for ChatBots [1].
[1] Shivchander Sudalairaj*, Abhishek Bhandwaldar*, Aldo Pareja*, Kai Xu, David D. Cox, Akash Srivastava*. "LAB: Large-Scale Alignment for ChatBots", arXiv preprint arXiv: 2403.01081, 2024. (* denotes equal contributions)
InstructLab release 0.17.0 on June 14, 2024 contains updates to the ilab
CLI design. The ilab
commands now fall into groups for an easier workflow and understanding of the commands. For more information, see the InstructLab CLI reference To view all the available flags for each command group, use the --help
tag after the command. The original commands are still in effect, but will be deprecated in release 0.19.0 on July 11, 2024.
ilab
ilab
is a Command-Line Interface (CLI) tool that allows you to perform the following actions:
To add new knowledge and skills to the pre-trained LLM, add information to the companion taxonomy repository.
After you have added knowledge and skills to the taxonomy, you can perform the following actions:
ilab
to generate new synthetic training data based on the changes in your local taxonomy
repository.graph TD; download-->chat chat[Chat with the LLM]-->add add[Add new knowledge\nor skill to taxonomy]-->generate[generate new\nsynthetic training data] generate-->train train[Re-train]-->|Chat with\nthe re-trained LLM\nto see the results|chat
For an overview of the full workflow, see the workflow diagram.
[!IMPORTANT] We have optimized InstructLab so that community members with commodity hardware can perform these steps. However, running InstructLab on a laptop will provide a low-fidelity approximation of synthetic data generation (using the
ilab data generate
command) and model instruction tuning (using theilab model train
command, which uses QLoRA). To achieve higher quality, use more sophisticated hardware and configure InstructLab to use a larger teacher model such as Mixtral.
<!-- -->NOTE: Python 3.12 is currently not supported, because some dependencies don't work on Python 3.12, yet.
NOTE: When installing the
ilab
CLI on macOS, you may have to run thexcode-select --install
command, installing the required packages previously listed.
ilab
When installing on Fedora Linux, install C++, Python 3.10 or 3.11, and other necessary tools by running the following command:
sudo dnf install gcc gcc-c++ make git python3.11 python3.11-devel
If you are running on macOS, this installation is not necessary and you can begin your process with the following step.
Create a new directory called instructlab
to store the files the ilab
CLI needs when running and cd
into the directory by running the following command:
mkdir instructlab cd instructlab
NOTE: The following steps in this document use Python venv for virtual environments. However, if you use another tool such as pyenv or Conda Miniforge for managing Python environments on your machine continue to use that tool instead. Otherwise, you may have issues with packages that are installed but not found in
venv
.
There are a few ways you can locally install the ilab
CLI. Select your preferred installation method from the following instructions. You can then install ilab
and activate your venv
environment.
NOTE: ⏳
pip install
may take some time, depending on your internet connection. In case installation fails with errorunsupported instruction `vpdpbusd'
, append-C cmake.args="-DLLAMA_NATIVE=off"
topip install
command.
See the GPU acceleration documentation for how to to enable hardware acceleration for interaction and training on AMD ROCm, Apple Metal Performance Shaders (MPS), and Nvidia CUDA.
python3 -m venv --upgrade-deps venv source venv/bin/activate pip cache remove llama_cpp_python pip install 'instructlab[cpu]' \ --extra-index-url=https://download.pytorch.org/whl/cpu \ -C cmake.args="-DLLAMA_NATIVE=off"
NOTE: Additional Build Argument for Intel Macs
If you have an Mac with an Intel CPU, you must add a prefix of
CMAKE_ARGS="-DLLAMA_METAL=off"
to thepip install
command to ensure that the build is done without Apple M-series GPU support.
(venv) $ CMAKE_ARGS="-DLLAMA_METAL=off" pip install ...
python3 -m venv --upgrade-deps venv source venv/bin/activate pip cache remove llama_cpp_python pip install 'instructlab[rocm]' \ --extra-index-url https://download.pytorch.org/whl/rocm6.0 \ -C cmake.args="-DLLAMA_HIPBLAS=on" \ -C cmake.args="-DAMDGPU_TARGETS=all" \ -C cmake.args="-DCMAKE_C_COMPILER=/opt/rocm/llvm/bin/clang" \ -C cmake.args="-DCMAKE_CXX_COMPILER=/opt/rocm/llvm/bin/clang++" \ -C cmake.args="-DCMAKE_PREFIX_PATH=/opt/rocm" \ -C cmake.args="-DLLAMA_NATIVE=off"
On Fedora 40+, use -DCMAKE_C_COMPILER=clang-17
and -DCMAKE_CXX_COMPILER=clang++-17
.
NOTE: Make sure your system Python build is
Mach-O 64-bit executable arm64
by usingfile -b $(command -v python)
, or if your system is setup with pyenv by using thefile -b $(pyenv which python)
command.
python3 -m venv --upgrade-deps venv source venv/bin/activate pip cache remove llama_cpp_python pip install 'instructlab[mps]'
python3 -m venv --upgrade-deps venv source venv/bin/activate pip cache remove llama_cpp_python pip install 'instructlab[cuda]' \ -C cmake.args="-DLLAMA_CUDA=on" \ -C cmake.args="-DLLAMA_NATIVE=off"
From your venv
environment, verify ilab
is installed correctly, by running the ilab
command.
ilab
Example output of the ilab
command
(venv) $ ilab Usage: ilab [OPTIONS] COMMAND [ARGS]... CLI for interacting with InstructLab. If this is your first time running InstructLab, it's best to start with `ilab config init` to create the environment. Options: --config PATH Path to a configuration file. [default: config.yaml] --version Show the version and exit. --help Show this message and exit. Command: config Command group for Interacting with the Config of InstructLab data Command group for Interacting with the Data of generated by... model Command group for Interacting with the Models in InstructLab sysinfo Print system information taxonomy Command group for Interacting with the Taxonomy in InstructLab Aliases: chat: model chat convert: model convert diff: taxonomy diff download: model download generate: data generate init: config init serve: model serve test: model test train: model train
IMPORTANT Every
ilab
command needs to be run from within your Python virtual environment. You can enter the Python environment by running thesource venv/bin/activate
command.
Optional: You can enable tab completion for the ilab
command.
Enable tab completion in bash
with the following command:
eval "$(_ILAB_COMPLETE=bash_source ilab)"
To have this enabled automatically every time you open a new shell,
you can save the completion script and source it from ~/.bashrc
:
_ILAB_COMPLETE=bash_source ilab > ~/.ilab-complete.bash echo ". ~/.ilab-complete.bash" >> ~/.bashrc
Enable tab completion in zsh
with the following command:
eval "$(_ILAB_COMPLETE=zsh_source ilab)"
To have this enabled automatically every time you open a new shell,
you can save the completion script and source it from ~/.zshrc
:
_ILAB_COMPLETE=zsh_source ilab > ~/.ilab-complete.zsh echo ". ~/.ilab-complete.zsh" >> ~/.zshrc
Enable tab completion in fish
with the following command:
_ILAB_COMPLETE=fish_source ilab | source
To have this enabled automatically every time you open a new shell,
you can save the completion script and source it from ~/.bashrc
:
_ILAB_COMPLETE=fish_source ilab > ~/.config/fish/completions/ilab.fish
ilab
Initialize ilab
by running the following command:
ilab config init
Example output
Welcome to InstructLab CLI. This guide will help you set up your environment. Please provide the following values to initiate the environment [press Enter for defaults]: Path to taxonomy repo [taxonomy]: <ENTER>
When prompted by the interface, press Enter to add a new default config.yaml
file.
When prompted, clone the https://github.com/instructlab/taxonomy.git
repository into the current directory by typing y.
Optional: If you want to point to an existing local clone of the taxonomy
repository, you can pass the path interactively or alternatively with the --taxonomy-path
flag.
Example output after initializing ilab
(venv) $ ilab config init Welcome to InstructLab CLI. This guide will help you set up your environment. Please provide the following values to initiate the environment [press Enter for defaults]: Path to taxonomy repo [taxonomy]: <ENTER> `taxonomy` seems to not exists or is empty. Should I clone https://github.com/instructlab/taxonomy.git for you? [y/N]: y Cloning https://github.com/instructlab/taxonomy.git... Generating `config.yaml` in the current directory... Initialization completed successfully, you're ready to start using `ilab`. Enjoy!
ilab
will use the default configuration file unless otherwise specified. You can override this behavior with the --config
parameter for any ilab
command.
Run the ilab model download
command.
ilab model download
ilab model download
downloads a compact pre-trained version of the model (~4.4G) from HuggingFace:
(venv) $ ilab model download Downloading model from Hugging Face: instructlab/merlinite-7b-lab-GGUF@main to /home/user/.cache/instructlab/models... ... INFO 2024-08-01 15:05:48,464 huggingface_hub.file_download:1893: Download complete. Moving file to /home/user/.cache/instructlab/models/merlinite-7b-lab-Q4_K_M.gguf
NOTE ⏳ This command can take few minutes or immediately depending on your internet connection or model is cached. If you have issues connecting to Hugging Face, refer to the Hugging Face discussion forum for more details.
Specify repository, model, and a Hugging Face token if necessary. More information about Hugging Face tokens can be found here
HF_TOKEN=<YOUR HUGGINGFACE TOKEN GOES HERE> ilab model download
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个 利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号