colpali

colpali

基于视觉语言模型的高效文档检索系统

ColPali是一个基于视觉语言模型的文档检索系统。该项目整合了ColBERT检索器模型、大型语言模型和图像语言模型,实现高效的文档搜索功能。ColPali支持自定义训练,安装和使用简便,适用于多种文档检索场景。系统能同时处理文本和图像信息,提供准确全面的检索结果。

ColPali文档检索视觉语言模型模型训练效率Github开源项目

ColPali:使用视觉语言模型的高效文档检索

[博客] [论文] [ColPali 模型卡片] [ViDoRe 基准测试] [HuggingFace 演示]

相关论文

ColPali:使用视觉语言模型的高效文档检索 Manuel Faysse, Hugues Sibille, Tony Wu, Bilel Omrani, Gautier Viaud, Céline Hudelot, Pierre Colombo

本仓库包含用于训练自定义 Colbert 检索模型的代码。 值得注意的是,我们使用 LLM(解码器)以及图像语言模型来训练 colbert!

安装

通过 git

pip install git+https://github.com/illuin-tech/colpali

从源代码

git clone https://github.com/illuin-tech/colpali cd colpali pip install -r requirements.txt

使用方法

模型使用示例位于 scripts 目录中。

# 可修改的示例脚本 python scripts/infer/run_inference_with_python.py
import torch import typer from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoProcessor from PIL import Image from colpali_engine.models.paligemma_colbert_architecture import ColPali from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator from colpali_engine.utils.colpali_processing_utils import process_images, process_queries from colpali_engine.utils.image_from_page_utils import load_from_dataset def main() -> None: """使用 ColPali 运行推理的示例脚本""" # 加载模型 model_name = "vidore/colpali" model = ColPali.from_pretrained("google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda").eval() model.load_adapter(model_name) processor = AutoProcessor.from_pretrained(model_name) # 选择图像 -> load_from_pdf(<pdf_path>), load_from_image_urls(["<url_1>"]), load_from_dataset(<path>) images = load_from_dataset("vidore/docvqa_test_subsampled") queries = ["James V. Fiorca 来自哪所大学?", "日本首相是谁?"] # 运行推理 - 文档 dataloader = DataLoader( images, batch_size=4, shuffle=False, collate_fn=lambda x: process_images(processor, x), ) ds = [] for batch_doc in tqdm(dataloader): with torch.no_grad(): batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()} embeddings_doc = model(**batch_doc) ds.extend(list(torch.unbind(embeddings_doc.to("cpu")))) # 运行推理 - 查询 dataloader = DataLoader( queries, batch_size=4, shuffle=False, collate_fn=lambda x: process_queries(processor, x, Image.new("RGB", (448, 448), (255, 255, 255))), ) qs = [] for batch_query in dataloader: with torch.no_grad(): batch_query = {k: v.to(model.device) for k, v in batch_query.items()} embeddings_query = model(**batch_query) qs.extend(list(torch.unbind(embeddings_query.to("cpu")))) # 运行评估 retriever_evaluator = CustomEvaluator(is_multi_vector=True) scores = retriever_evaluator.evaluate(qs, ds) print(scores.argmax(axis=1)) if __name__ == "__main__": typer.run(main)

HuggingFace 上的基础 Colpali 模型卡片中也提供了详细信息:ColPali 模型卡片

训练

USE_LOCAL_DATASET=0 python scripts/train/train_colbert.py scripts/configs/siglip/train_siglip_model_debug.yaml

accelerate launch scripts/train/train_colbert.py scripts/configs/train_colidefics_model.yaml

配置

所有训练参数都可以通过配置文件设置。 配置文件是一个包含所有训练参数的 yaml 文件。

结构如下:

@dataclass class ColModelTrainingConfig: model: PreTrainedModel tr_args: TrainingArguments = None output_dir: str = None max_length: int = 256 run_eval: bool = True run_train: bool = True peft_config: Optional[LoraConfig] = None add_suffix: bool = False processor: Idefics2Processor = None tokenizer: PreTrainedTokenizer = None loss_func: Optional[Callable] = ColbertLoss() dataset_loading_func: Optional[Callable] = None eval_dataset_loader: Optional[Dict[str, Callable]] = None pretrained_peft_model_name_or_path: Optional[str] = None

示例

配置文件示例:

config: (): colpali_engine.utils.train_colpali_engine_models.ColModelTrainingConfig output_dir: !path ../../../models/without_tabfquad/train_colpali-3b-mix-448 processor: () : colpali_engine.utils.wrapper.AutoProcessorWrapper pretrained_model_name_or_path: "./models/paligemma-3b-mix-448" max_length: 50 model: (): colpali_engine.utils.wrapper.AutoColModelWrapper pretrained_model_name_or_path: "./models/paligemma-3b-mix-448" training_objective: "colbertv1" torch_dtype: !ext torch.bfloat16 dataset_loading_func: !ext colpali_engine.utils.dataset_transformation.load_train_set eval_dataset_loader: !import ../data/test_data.yaml max_length: 50 run_eval: true add_suffix: true loss_func: (): colpali_engine.loss.colbert_loss.ColbertPairwiseCELoss tr_args: !import ../tr_args/default_tr_args.yaml peft_config: (): peft.LoraConfig r: 32 lora_alpha: 32 lora_dropout: 0.1 init_lora_weights: "gaussian" bias: "none" task_type: "FEATURE_EXTRACTION" target_modules: '(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'

本地训练

USE_LOCAL_DATASET=0 python scripts/train/train_colbert.py scripts/configs/siglip/train_siglip_model_debug.yaml

SLURM

sbatch --nodes=1 --cpus-per-task=16 --mem-per-cpu=32GB --time=20:00:00 --gres=gpu:1 -p gpua100 --job-name=colidefics --output=colidefics.out --error=colidefics.err --wrap="accelerate launch scripts/train/train_colbert.py scripts/configs/train_colidefics_model.yaml" sbatch --nodes=1 --time=5:00:00 -A cad15443 --gres=gpu:8 --constraint=MI250 --job-name=colpali --wrap="python scripts/train/train_colbert.py scripts/configs/train_colpali_model.yaml"

引用

@misc{faysse2024colpaliefficientdocumentretrieval, title={ColPali: Efficient Document Retrieval with Vision Language Models}, author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo}, year={2024}, eprint={2407.01449}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2407.01449}, }

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多