prom2teams is a service built with Python that receives alert notifications from a previously configured Prometheus Alertmanager instance and forwards it to Microsoft Teams using defined connectors.
It presents grouping of alerts, labels/annotations exclusion and a Teams' alert retry policy among its key features.
The application has been tested with Prometheus 2.2.1, Python 3.8.0 and pip 9.0.1.
Newer versions of Prometheus/Python/pip should work but could also present issues.
prom2teams is present on PyPI, so could be installed using pip3:
$ pip3 install prom2teams
Note: Works since v1.1.1
Important: Config path must be provided with at least one Microsoft Teams Connector. Check the options to know how you can supply it.
# To start the server (enable metrics, config file path , group alerts by, log file path, log level and Jinja2 template path are optional arguments): $ prom2teams [--enablemetrics] [--configpath <config file path>] [--groupalertsby ("name"|"description"|"instance"|"severity"|"summary")] [--logfilepath <log file path>] [--loglevel (DEBUG|INFO|WARNING|ERROR|CRITICAL)] [--templatepath <Jinja2 template file path>] # To show the help message: $ prom2teams --help
Other options to start the service are:
export APP_CONFIG_FILE=<config file path> $ prom2teams
Note: Grouping alerts works since v2.2.1
Every new Prom2teams release, a new Docker image is built in our Dockerhub. We strongly recommend you to use the images with the version tag, though it will be possible to use them without it.
There are two things you need to bear in mind when creating a Prom2teams container:
PROM2TEAMS_CONNECTORPROM2TEAMS_GROUP_ALERTS_BYSo a sample Docker run command would be:
$ docker run -it -d -e PROM2TEAMS_GROUP_ALERTS_BY=FIELD_YOU_WANT_TO_GROUP_BY -e PROM2TEAMS_CONNECTOR="CONNECTOR_URL" -p 8089:8089 idealista/prom2teams:VERSION
If you prefer to use your own config file, you just need to provide it as a Docker volume to the container and map it to /opt/prom2teams/config.ini. Sample:
$ docker run -it -d -v pathToTheLocalConfigFile:/opt/prom2teams/config.ini -p 8089:8089 idealista/prom2teams:VERSION
To install the chart with the release name my-release run:
$ helm install --name my-release /location/of/prom2teams_ROOT/helm
After a few seconds, Prom2Teams should be running.
Tip: List all releases using
helm list, a release is a name used to track a specific deployment
To uninstall/delete the my-release deployment:
$ helm delete my-release
Tip: Use helm delete --purge my-release to completely remove the release from Helm internal storage
The command removes all the Kubernetes components associated with the chart and deletes the release.
$ helm uninstall my-release
The command removes all the Kubernetes components associated with the chart and deletes the release.
The following table lists the configurable parameters of the Prom2teams chart and their default values.
| Parameter | Description | Default |
|---|---|---|
image.repository | The image repository to pull from | idealista/prom2teams |
image.tag | The image tag to pull | <empty> |
image.pullPolicy | The image pull policy | IfNotPresent |
resources.requests.cpu | CPU requested for being run in a node | 100m |
resources.requests.memory | Memory requested for being run in a node | 128Mi |
resources.limits.cpu | CPU limit | 200m |
resources.limits.memory | Memory limit | 200Mi |
service.type | Service Map (NodePort/ClusterIP) | ClusterIP |
service.port | Service Port | 8089 |
prom2teams.host | IP to bind to | 0.0.0.0 |
prom2teams.port | Port to bind to | 8089 |
prom2teams.connector | Connector URL | <empty> |
prom2teams.connectors | A map where the keys are the connector names and the values are the connector webhook urls | {} |
prom2teams.group_alerts_by | Group_alerts_by field | <empty> |
prom2teams.loglevel | Loglevel | INFO |
prom2teams.templatepath | Custom Template path (files/teams.j2) | /opt/prom2teams/helmconfig/teams.j2 |
prom2teams.config | Config (specific to Helm) | /opt/prom2teams/helmconfig/config.ini |
prom2teams.extraEnv | Dictionary of arbitrary additional environment variables for deployment (eg. HTTP_PROXY) | <empty> |
For production environments you should prefer using a WSGI server. uWSGI dependency is installed for an easy usage. Some considerations must be taken to use it:
The binary prom2teams_uwsgi launches the app using the uwsgi server. Due to some incompatibilities with wheel
you must install prom2teams using sudo pip install --no-binary :all: prom2teams (https://github.com/pypa/wheel/issues/92)
$ prom2teams_uwsgi <path to uwsgi ini config>
And uwsgi would look like:
[uwsgi]
master = true
processes = 5
#socket = 0.0.0.0:8001
#protocol = http
socket = /tmp/prom2teams.sock
chmod-socket = 777
vacuum = true
env = APP_ENVIRONMENT=pro
env = APP_CONFIG_FILE=/etc/default/prom2teams.ini
Consider not provide chdir property neither module property.
Also you can set the module file, by doing a symbolic link: sudo mkdir -p /usr/local/etc/prom2teams/ && sudo ln -sf /usr/local/lib/python3.7/dist-packages/usr/local/etc/prom2teams/wsgi.py /usr/local/etc/prom2teams/wsgi.py (check your dist-packages folder)
Another approach is to provide yourself the module file module example and the bin uwsgi call uwsgi example
Note: default log level is DEBUG. Messages are redirected to stdout. To enable file log, set the env APP_ENVIRONMENT=(pro|pre)
The config file is an INI file and should have the structure described below:
[Microsoft Teams] # At least one connector is required here Connector: <webhook url> AnotherConnector: <webhook url> ... [HTTP Server] Host: <host ip> # default: localhost Port: <host port> # default: 8089 [Log] Level: <loglevel (DEBUG|INFO|WARNING|ERROR|CRITICAL)> # default: DEBUG Path: <log file path> # default: /var/log/prom2teams/prom2teams.log [Template] Path: <Jinja2 template path> # default: app resources default template (./prom2teams/resources/templates/teams.j2) [Group Alerts] Field: <Field to group alerts by> # alerts won't be grouped by default [Labels] Excluded: <Comma separated list of labels to ignore> [Annotations] Excluded: <Comma separated list of annotations to ignore> [Teams Client] RequestTimeout: <Configures the request timeout> # defaults to 30 secs RetryEnable: <Enables teams client retry policy> # defaults to false RetryWaitTime: <Wait time between retries> # default: 60 secs MaxPayload: <Teams client payload limit in bytes> # default: 24KB
Note: Grouping alerts works since v2.2.0
The webhook receiver in Prometheus allows configuring a prom2teams server.
The url is formed by the host and port defined in the previous step.
Note: In order to keep compatibility with previous versions, v2.0 keep attending the default connector ("Connector") in the endpoint 0.0.0.0:8089. This will be removed in future versions.
// The prom2teams endpoint to send HTTP POST requests to.
url: 0.0.0.0:8089/v2/<Connector1>
Prom2teams uses Flask and, to have the service monitored, we use @rycus66's Prometheus Flask Exporter. This will enable an endpoint in /metrics where you could find interesting metrics to monitor such as number of responses with a certain status. To enable this endpoint, just either:
--enablemetrics or -m flag when launching prom2teams.PROM2TEAMS_PROMETHEUS_METRICS=true.prom2teams provides a default template built with Jinja2 to render messages in Microsoft Teams. This template could be overrided using the 'templatepath' argument ('--templatepath <Jinja2 template file path>') during the application start.
Some fields are considered mandatory when received from Alert Manager. If such a field is not included a default value of 'unknown' is assigned.
All non-mandatory labels not in excluded list are injected in extra_labels key. All non-mandatory annotations not in excluded list are injected in extra_annotations key.
Alertmanager fingerprints are available in the fingerprint key. Fingerprints
are supported by Alertmanager 0.19.0 or greater.
Accessing to <Host>:<Port> (e.g. localhost:8089) in a web browser shows the API v1 documentation.
Accessing to <Host>:<Port>/v2 (e.g. localhost:8089/v2) in a web browser shows the API v2 documentation.
To run the test suite you should type the following:
// After cloning prom2teams :) $ pip install -r requirements.txt $ python3 -m unittest discover tests $ cd tests/e2e $ ./test.sh
For the versions available, see the tags on this repository.
Additionaly you can see what change in each version in the CHANGELOG.md file.
See also the list of contributors who participated in this project.
This project is licensed under the Apache 2.0 license - see the LICENSE file for details.
Please read CONTRIBUTING.md for details on our code of conduct, and the process for submitting pull requests to


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大 纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号