prom2teams

prom2teams

Prometheus告警与Microsoft Teams的智能集成工具

prom2teams是一款开源Python工具,用于将Prometheus Alertmanager的告警信息智能转发至Microsoft Teams。它支持告警分组、标签筛选和重试机制,可通过Docker或Helm Chart部署。该工具能无缝对接现有监控系统,有效提升运维团队的告警处理效率。

PrometheusMicrosoft Teams告警集成DockerHelm ChartGithub开源项目
<div align="center"> <img alt="logo" src="https://raw.githubusercontent.com/idealista/prom2teams/master/logo.gif">

Build Status Quality Gate Status Docker Build Status Docker Hub Pulls

</div>

prom2teams: Prometheus Alertmanager/Microsoft Teams integration

<p align="center"> <img src="https://raw.githubusercontent.com/idealista/prom2teams/master/assets/example.png" alt="Alert example" style="width: 600px;"/> </p>

prom2teams is a service built with Python that receives alert notifications from a previously configured Prometheus Alertmanager instance and forwards it to Microsoft Teams using defined connectors.

It presents grouping of alerts, labels/annotations exclusion and a Teams' alert retry policy among its key features.

Getting Started

Prerequisites

The application has been tested with Prometheus 2.2.1, Python 3.8.0 and pip 9.0.1.

Newer versions of Prometheus/Python/pip should work but could also present issues.

Installing

prom2teams is present on PyPI, so could be installed using pip3:

$ pip3 install prom2teams

Note: Works since v1.1.1

Usage

Important: Config path must be provided with at least one Microsoft Teams Connector. Check the options to know how you can supply it.

# To start the server (enable metrics, config file path , group alerts by, log file path, log level and Jinja2 template path are optional arguments): $ prom2teams [--enablemetrics] [--configpath <config file path>] [--groupalertsby ("name"|"description"|"instance"|"severity"|"summary")] [--logfilepath <log file path>] [--loglevel (DEBUG|INFO|WARNING|ERROR|CRITICAL)] [--templatepath <Jinja2 template file path>] # To show the help message: $ prom2teams --help

Other options to start the service are:

export APP_CONFIG_FILE=<config file path> $ prom2teams

Note: Grouping alerts works since v2.2.1

Docker image

Every new Prom2teams release, a new Docker image is built in our Dockerhub. We strongly recommend you to use the images with the version tag, though it will be possible to use them without it.

There are two things you need to bear in mind when creating a Prom2teams container:

  • The connector URL must be passed as the environment variable PROM2TEAMS_CONNECTOR
  • In case you want to group alerts, you need to pass the field as the environment variable PROM2TEAMS_GROUP_ALERTS_BY
  • You need to map container's Prom2teams port to one on your host.

So a sample Docker run command would be:

$ docker run -it -d -e PROM2TEAMS_GROUP_ALERTS_BY=FIELD_YOU_WANT_TO_GROUP_BY -e PROM2TEAMS_CONNECTOR="CONNECTOR_URL" -p 8089:8089 idealista/prom2teams:VERSION

Provide custom config file

If you prefer to use your own config file, you just need to provide it as a Docker volume to the container and map it to /opt/prom2teams/config.ini. Sample:

$ docker run -it -d -v pathToTheLocalConfigFile:/opt/prom2teams/config.ini -p 8089:8089 idealista/prom2teams:VERSION

Helm chart

Installing the Chart

To install the chart with the release name my-release run:

$ helm install --name my-release /location/of/prom2teams_ROOT/helm

After a few seconds, Prom2Teams should be running.

Tip: List all releases using helm list, a release is a name used to track a specific deployment

Uninstalling the Chart

To uninstall/delete the my-release deployment:

Helm 2
$ helm delete my-release

Tip: Use helm delete --purge my-release to completely remove the release from Helm internal storage

The command removes all the Kubernetes components associated with the chart and deletes the release.

Helm 3
$ helm uninstall my-release

The command removes all the Kubernetes components associated with the chart and deletes the release.

Configuration

The following table lists the configurable parameters of the Prom2teams chart and their default values.

ParameterDescriptionDefault
image.repositoryThe image repository to pull fromidealista/prom2teams
image.tagThe image tag to pull<empty>
image.pullPolicyThe image pull policyIfNotPresent
resources.requests.cpuCPU requested for being run in a node100m
resources.requests.memoryMemory requested for being run in a node128Mi
resources.limits.cpuCPU limit200m
resources.limits.memoryMemory limit200Mi
service.typeService Map (NodePort/ClusterIP)ClusterIP
service.portService Port8089
prom2teams.hostIP to bind to0.0.0.0
prom2teams.portPort to bind to8089
prom2teams.connectorConnector URL<empty>
prom2teams.connectorsA map where the keys are the connector names and the values are the connector webhook urls{}
prom2teams.group_alerts_byGroup_alerts_by field<empty>
prom2teams.loglevelLoglevelINFO
prom2teams.templatepathCustom Template path (files/teams.j2)/opt/prom2teams/helmconfig/teams.j2
prom2teams.configConfig (specific to Helm)/opt/prom2teams/helmconfig/config.ini
prom2teams.extraEnvDictionary of arbitrary additional environment variables for deployment (eg. HTTP_PROXY)<empty>

Production

For production environments you should prefer using a WSGI server. uWSGI dependency is installed for an easy usage. Some considerations must be taken to use it:

The binary prom2teams_uwsgi launches the app using the uwsgi server. Due to some incompatibilities with wheel you must install prom2teams using sudo pip install --no-binary :all: prom2teams (https://github.com/pypa/wheel/issues/92)

$ prom2teams_uwsgi <path to uwsgi ini config>

And uwsgi would look like:

[uwsgi]
master = true
processes = 5
#socket = 0.0.0.0:8001
#protocol = http
socket = /tmp/prom2teams.sock
chmod-socket = 777
vacuum = true
env = APP_ENVIRONMENT=pro
env = APP_CONFIG_FILE=/etc/default/prom2teams.ini

Consider not provide chdir property neither module property.

Also you can set the module file, by doing a symbolic link: sudo mkdir -p /usr/local/etc/prom2teams/ && sudo ln -sf /usr/local/lib/python3.7/dist-packages/usr/local/etc/prom2teams/wsgi.py /usr/local/etc/prom2teams/wsgi.py (check your dist-packages folder)

Another approach is to provide yourself the module file module example and the bin uwsgi call uwsgi example

Note: default log level is DEBUG. Messages are redirected to stdout. To enable file log, set the env APP_ENVIRONMENT=(pro|pre)

Config file

The config file is an INI file and should have the structure described below:

[Microsoft Teams] # At least one connector is required here Connector: <webhook url> AnotherConnector: <webhook url> ... [HTTP Server] Host: <host ip> # default: localhost Port: <host port> # default: 8089 [Log] Level: <loglevel (DEBUG|INFO|WARNING|ERROR|CRITICAL)> # default: DEBUG Path: <log file path> # default: /var/log/prom2teams/prom2teams.log [Template] Path: <Jinja2 template path> # default: app resources default template (./prom2teams/resources/templates/teams.j2) [Group Alerts] Field: <Field to group alerts by> # alerts won't be grouped by default [Labels] Excluded: <Comma separated list of labels to ignore> [Annotations] Excluded: <Comma separated list of annotations to ignore> [Teams Client] RequestTimeout: <Configures the request timeout> # defaults to 30 secs RetryEnable: <Enables teams client retry policy> # defaults to false RetryWaitTime: <Wait time between retries> # default: 60 secs MaxPayload: <Teams client payload limit in bytes> # default: 24KB

Note: Grouping alerts works since v2.2.0

Configuring Prometheus

The webhook receiver in Prometheus allows configuring a prom2teams server.

The url is formed by the host and port defined in the previous step.

Note: In order to keep compatibility with previous versions, v2.0 keep attending the default connector ("Connector") in the endpoint 0.0.0.0:8089. This will be removed in future versions.

// The prom2teams endpoint to send HTTP POST requests to.
url: 0.0.0.0:8089/v2/<Connector1>

Prom2teams Prometheus metrics

Prom2teams uses Flask and, to have the service monitored, we use @rycus66's Prometheus Flask Exporter. This will enable an endpoint in /metrics where you could find interesting metrics to monitor such as number of responses with a certain status. To enable this endpoint, just either:

  • Use the --enablemetrics or -m flag when launching prom2teams.
  • Set the environment variable PROM2TEAMS_PROMETHEUS_METRICS=true.

Templating

prom2teams provides a default template built with Jinja2 to render messages in Microsoft Teams. This template could be overrided using the 'templatepath' argument ('--templatepath <Jinja2 template file path>') during the application start.

Some fields are considered mandatory when received from Alert Manager. If such a field is not included a default value of 'unknown' is assigned.

All non-mandatory labels not in excluded list are injected in extra_labels key. All non-mandatory annotations not in excluded list are injected in extra_annotations key.

Alertmanager fingerprints are available in the fingerprint key. Fingerprints are supported by Alertmanager 0.19.0 or greater.

Documentation

Swagger UI

Accessing to <Host>:<Port> (e.g. localhost:8089) in a web browser shows the API v1 documentation.

<img src="https://raw.githubusercontent.com/idealista/prom2teams/master/assets/swagger_v1.png" alt="Swagger UI" style="width: 600px;"/>

Accessing to <Host>:<Port>/v2 (e.g. localhost:8089/v2) in a web browser shows the API v2 documentation.

<img src="https://raw.githubusercontent.com/idealista/prom2teams/master/assets/swagger_v2.png" alt="Swagger UI" style="width: 600px;"/>

Testing

To run the test suite you should type the following:

// After cloning prom2teams :) $ pip install -r requirements.txt $ python3 -m unittest discover tests $ cd tests/e2e $ ./test.sh

Built With

Python 3.8.0 pip 9.0.1

Versioning

For the versions available, see the tags on this repository.

Additionaly you can see what change in each version in the CHANGELOG.md file.

Authors

See also the list of contributors who participated in this project.

License

Apache 2.0 License

This project is licensed under the Apache 2.0 license - see the LICENSE file for details.

Contributing

Please read CONTRIBUTING.md for details on our code of conduct, and the process for submitting pull requests to

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多