prom2teams is a service built with Python that receives alert notifications from a previously configured Prometheus Alertmanager instance and forwards it to Microsoft Teams using defined connectors.
It presents grouping of alerts, labels/annotations exclusion and a Teams' alert retry policy among its key features.
The application has been tested with Prometheus 2.2.1, Python 3.8.0 and pip 9.0.1.
Newer versions of Prometheus/Python/pip should work but could also present issues.
prom2teams is present on PyPI, so could be installed using pip3:
$ pip3 install prom2teams
Note: Works since v1.1.1
Important: Config path must be provided with at least one Microsoft Teams Connector. Check the options to know how you can supply it.
# To start the server (enable metrics, config file path , group alerts by, log file path, log level and Jinja2 template path are optional arguments): $ prom2teams [--enablemetrics] [--configpath <config file path>] [--groupalertsby ("name"|"description"|"instance"|"severity"|"summary")] [--logfilepath <log file path>] [--loglevel (DEBUG|INFO|WARNING|ERROR|CRITICAL)] [--templatepath <Jinja2 template file path>] # To show the help message: $ prom2teams --help
Other options to start the service are:
export APP_CONFIG_FILE=<config file path> $ prom2teams
Note: Grouping alerts works since v2.2.1
Every new Prom2teams release, a new Docker image is built in our Dockerhub. We strongly recommend you to use the images with the version tag, though it will be possible to use them without it.
There are two things you need to bear in mind when creating a Prom2teams container:
PROM2TEAMS_CONNECTOR
PROM2TEAMS_GROUP_ALERTS_BY
So a sample Docker run command would be:
$ docker run -it -d -e PROM2TEAMS_GROUP_ALERTS_BY=FIELD_YOU_WANT_TO_GROUP_BY -e PROM2TEAMS_CONNECTOR="CONNECTOR_URL" -p 8089:8089 idealista/prom2teams:VERSION
If you prefer to use your own config file, you just need to provide it as a Docker volume to the container and map it to /opt/prom2teams/config.ini
. Sample:
$ docker run -it -d -v pathToTheLocalConfigFile:/opt/prom2teams/config.ini -p 8089:8089 idealista/prom2teams:VERSION
To install the chart with the release name my-release
run:
$ helm install --name my-release /location/of/prom2teams_ROOT/helm
After a few seconds, Prom2Teams should be running.
Tip: List all releases using
helm list
, a release is a name used to track a specific deployment
To uninstall/delete the my-release
deployment:
$ helm delete my-release
Tip: Use helm delete --purge my-release to completely remove the release from Helm internal storage
The command removes all the Kubernetes components associated with the chart and deletes the release.
$ helm uninstall my-release
The command removes all the Kubernetes components associated with the chart and deletes the release.
The following table lists the configurable parameters of the Prom2teams chart and their default values.
Parameter | Description | Default |
---|---|---|
image.repository | The image repository to pull from | idealista/prom2teams |
image.tag | The image tag to pull | <empty> |
image.pullPolicy | The image pull policy | IfNotPresent |
resources.requests.cpu | CPU requested for being run in a node | 100m |
resources.requests.memory | Memory requested for being run in a node | 128Mi |
resources.limits.cpu | CPU limit | 200m |
resources.limits.memory | Memory limit | 200Mi |
service.type | Service Map (NodePort/ClusterIP) | ClusterIP |
service.port | Service Port | 8089 |
prom2teams.host | IP to bind to | 0.0.0.0 |
prom2teams.port | Port to bind to | 8089 |
prom2teams.connector | Connector URL | <empty> |
prom2teams.connectors | A map where the keys are the connector names and the values are the connector webhook urls | {} |
prom2teams.group_alerts_by | Group_alerts_by field | <empty> |
prom2teams.loglevel | Loglevel | INFO |
prom2teams.templatepath | Custom Template path (files/teams.j2) | /opt/prom2teams/helmconfig/teams.j2 |
prom2teams.config | Config (specific to Helm) | /opt/prom2teams/helmconfig/config.ini |
prom2teams.extraEnv | Dictionary of arbitrary additional environment variables for deployment (eg. HTTP_PROXY ) | <empty> |
For production environments you should prefer using a WSGI server. uWSGI dependency is installed for an easy usage. Some considerations must be taken to use it:
The binary prom2teams_uwsgi
launches the app using the uwsgi server. Due to some incompatibilities with wheel
you must install prom2teams
using sudo pip install --no-binary :all: prom2teams
(https://github.com/pypa/wheel/issues/92)
$ prom2teams_uwsgi <path to uwsgi ini config>
And uwsgi
would look like:
[uwsgi]
master = true
processes = 5
#socket = 0.0.0.0:8001
#protocol = http
socket = /tmp/prom2teams.sock
chmod-socket = 777
vacuum = true
env = APP_ENVIRONMENT=pro
env = APP_CONFIG_FILE=/etc/default/prom2teams.ini
Consider not provide chdir
property neither module
property.
Also you can set the module
file, by doing a symbolic link: sudo mkdir -p /usr/local/etc/prom2teams/ && sudo ln -sf /usr/local/lib/python3.7/dist-packages/usr/local/etc/prom2teams/wsgi.py /usr/local/etc/prom2teams/wsgi.py
(check your dist-packages folder)
Another approach is to provide yourself the module
file module example and the bin
uwsgi call uwsgi example
Note: default log level is DEBUG. Messages are redirected to stdout. To enable file log, set the env APP_ENVIRONMENT=(pro|pre)
The config file is an INI file and should have the structure described below:
[Microsoft Teams] # At least one connector is required here Connector: <webhook url> AnotherConnector: <webhook url> ... [HTTP Server] Host: <host ip> # default: localhost Port: <host port> # default: 8089 [Log] Level: <loglevel (DEBUG|INFO|WARNING|ERROR|CRITICAL)> # default: DEBUG Path: <log file path> # default: /var/log/prom2teams/prom2teams.log [Template] Path: <Jinja2 template path> # default: app resources default template (./prom2teams/resources/templates/teams.j2) [Group Alerts] Field: <Field to group alerts by> # alerts won't be grouped by default [Labels] Excluded: <Comma separated list of labels to ignore> [Annotations] Excluded: <Comma separated list of annotations to ignore> [Teams Client] RequestTimeout: <Configures the request timeout> # defaults to 30 secs RetryEnable: <Enables teams client retry policy> # defaults to false RetryWaitTime: <Wait time between retries> # default: 60 secs MaxPayload: <Teams client payload limit in bytes> # default: 24KB
Note: Grouping alerts works since v2.2.0
The webhook receiver in Prometheus allows configuring a prom2teams server.
The url is formed by the host and port defined in the previous step.
Note: In order to keep compatibility with previous versions, v2.0 keep attending the default connector ("Connector") in the endpoint 0.0.0.0:8089. This will be removed in future versions.
// The prom2teams endpoint to send HTTP POST requests to.
url: 0.0.0.0:8089/v2/<Connector1>
Prom2teams uses Flask and, to have the service monitored, we use @rycus66's Prometheus Flask Exporter. This will enable an endpoint in /metrics
where you could find interesting metrics to monitor such as number of responses with a certain status. To enable this endpoint, just either:
--enablemetrics
or -m
flag when launching prom2teams.PROM2TEAMS_PROMETHEUS_METRICS=true
.prom2teams provides a default template built with Jinja2 to render messages in Microsoft Teams. This template could be overrided using the 'templatepath' argument ('--templatepath <Jinja2 template file path>') during the application start.
Some fields are considered mandatory when received from Alert Manager. If such a field is not included a default value of 'unknown' is assigned.
All non-mandatory labels not in excluded list are injected in extra_labels
key. All non-mandatory annotations not in excluded list are injected in extra_annotations
key.
Alertmanager fingerprints are available in the fingerprint
key. Fingerprints
are supported by Alertmanager 0.19.0 or greater.
Accessing to <Host>:<Port>
(e.g. localhost:8089
) in a web browser shows the API v1 documentation.
Accessing to <Host>:<Port>/v2
(e.g. localhost:8089/v2
) in a web browser shows the API v2 documentation.
To run the test suite you should type the following:
// After cloning prom2teams :) $ pip install -r requirements.txt $ python3 -m unittest discover tests $ cd tests/e2e $ ./test.sh
For the versions available, see the tags on this repository.
Additionaly you can see what change in each version in the CHANGELOG.md file.
See also the list of contributors who participated in this project.
This project is licensed under the Apache 2.0 license - see the LICENSE file for details.
Please read CONTRIBUTING.md for details on our code of conduct, and the process for submitting pull requests to
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告 、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地