SparseTrack

SparseTrack

多目标跟踪新方法:基于伪深度的场景分解技术

SparseTrack提出了一种新的多目标跟踪方法,通过伪深度估计和深度级联匹配策略来分解密集场景。这种方法在MOT17和MOT20基准测试中表现出色,仅使用IoU匹配就达到了与复杂算法相当的性能。SparseTrack为解决拥挤场景中的多目标跟踪问题提供了新的思路,展示了简单方法在复杂任务中的潜力。

SparseTrack多目标跟踪场景分解伪深度数据关联Github开源项目

SparseTrack

SparseTrack是一个简单而强大的多目标跟踪器。

PWC

PWC

SparseTrack:基于伪深度的场景分解实现多目标跟踪

刘泽林,王兴刚,王成,刘文予,白翔

arXiv 2306.05238

新闻

  • 为跟踪添加了yolov8检测器,请参考v8分支。

摘要

探索稳健高效的关联方法一直是多目标跟踪(MOT)中的重要问题。尽管现有的跟踪方法已经取得了令人印象深刻的性能,但拥挤和频繁遮挡仍然对多目标跟踪构成了挑战性问题。我们揭示,对密集场景进行稀疏分解是提高遮挡目标关联性能的关键步骤。为此,我们提出了一种伪深度估计方法,用于从2D图像中获取目标的相对深度。其次,我们设计了一种深度级联匹配(DCM)算法,该算法可以利用获得的深度信息将密集目标集转换为多个稀疏目标子集,并按从近到远的顺序对这些稀疏目标子集进行数据关联。通过将伪深度方法和DCM策略整合到数据关联过程中,我们提出了一种新的跟踪器,称为SparseTrack。SparseTrack为解决具有挑战性的拥挤场景MOT问题提供了一个新的视角。仅使用IoU匹配,SparseTrack在MOT17和MOT20基准测试上达到了与最先进(SOTA)方法相当的性能。

<p align="center"><img src="https://yellow-cdn.veclightyear.com/835a84d5/859fbe14-56b6-47e1-b59f-f79f1856ffa6.png" width="500"/></p>

跟踪性能

MOT挑战赛测试集结果

数据集HOTAMOTAIDF1MTMLFPFNIDs
MOT1765.181.080.154.6%14.3%23904819271170
MOT2063.478.277.369.9%9.2%25108867201116

DanceTrack测试集对比

方法HOTADetAAssAMOTAIDF1
SparseTrack55.5 (+7.8)78.9 (+7.9)39.1 (+7.0)91.3 (+1.7)58.3 (+4.4)
ByteTrack47.771.032.189.653.9

注意

  • 所有推理实验都在1块NVIDIA GeForce RTX 3090 GPU上进行。
  • 每个实验使用与ByteTrack相同的检测器和模型权重。
  • SparseTrack仅依赖IoU距离关联,不使用任何外观嵌入、可学习运动和注意力组件。

安装

依赖

本项目是Detectron2的实现版本,需要编译OpenCVBoost

编译GMC(全局运动补偿)模块

步骤1:下载pbcvt,将python_module.cpp复制到**<pbcvt/src/>**路径。

步骤2:在pbcvt/CMakeLists.txt文件中添加相关的OpenCV模块。具体操作如下:在CMakeLists.txt文件中找到"find_package(OpenCV COMPONENTS REQUIRED)"这一行,将其替换为"find_package(OpenCV COMPONENTS core highgui video videoio videostab REQUIRED)"。

步骤3:在编译pbcvt之前修改Makefile文件中的编译路径。主要修改包括更新以下条目:CMAKE_SOURCE_DIR、CMAKE_BINARY_DIR、cmake_progress_start。

步骤4:编译pbcvt。例如,您可以运行以下脚本:

cmake -DPYTHON_DESIRED_VERSION=3.X  -DPYTHON3_INCLUDE_DIR=/home/lzl/miniconda3/envs/d2/include/python3.9 -DPYTHON3_NUMPY_INCLUDE_DIRS=/home/lzl/miniconda3/envs/d2/lib/python3.9/site-packages/numpy -DPYTHON3_LIBRARY=/home/lzl/miniconda3/envs/d2/lib/libpython3.9.so

# 然后运行:
make 

步骤5:请将通过pbcvt编译的"pbcvt.xxxxxx.so"文件复制到**<ROOT/SparseTrack/tracker/>**目录。

安装

git clone https://github.com/hustvl/SparseTrack.git cd SparseTrack pip install -r requirements.txt pip install Cython pip install cython_bbox

数据准备

下载MOT17MOT20CrowdHumanCitypersonETHZ,并将它们放在ROOT/下,结构如下:

ROOT
   |
   |——————SparseTrack(repo)
   |           └—————mix
   |                  └——————mix_17/annotations
   |                  └——————mix_20/annotations
   |                  └——————ablation_17/annotations
   |                  └——————ablation_20/annotations
   |——————MOT17
   |        └——————train
   |        └——————test
   └——————crowdhuman
   |         └——————Crowdhuman_train
   |         └——————Crowdhuman_val
   |         └——————annotation_train.odgt
   |         └——————annotation_val.odgt
   └——————MOT20
   |        └——————train
   |        └——————test
   └——————Citypersons
   |        └——————images
   |        └——————labels_with_ids
   └——————ETHZ
   |        └——————eth01
   |        └——————...
   |        └——————eth07
   └——————dancetrack
               └——————train
               └——————train_seqmap.txt
               └——————test
               └——————test_seqmap.txt
               └——————val
               └——————val_seqmap.txt
   

然后,您需要将数据集转换为COCO格式并混合不同的训练数据:

cd <ROOT>/SparseTrack
python3 tools/convert_mot17_to_coco.py
python3 tools/convert_mot20_to_coco.py
python3 tools/convert_crowdhuman_to_coco.py
python3 tools/convert_cityperson_to_coco.py
python3 tools/convert_ethz_to_coco.py
python3 tools/convert_dance_to_coco.py

创建不同的训练混合数据:

cd <ROOT>/SparseTrack

# 在CrowdHuman和MOT17半个训练集上训练,在MOT17半个验证集上评估。
python3 tools/mix_data_ablation.py

# 在CrowdHuman和MOT20半个训练集上训练,在MOT20半个验证集上评估。
python3 tools/mix_data_ablation_20.py

# 在MOT17、CrowdHuman、ETHZ、Citypersons上训练,在MOT17训练集上评估。
python3 tools/mix_data_test_mot17.py
# 在MOT20和CrowdHuman上训练,在MOT20训练集上评估。
python3 tools/mix_data_test_mot20.py

模型库

参见ByteTrack.model_zoo。我们使用了在MOT17、MOT20上训练的公开可用的ByteTrack模型库,以及YOLOX目标检测的消融研究模型。

此外,我们在MOT20训练集一半和Crowdhuman上进行了联合训练,并在MOT20验证集一半上进行了评估。模型如下:yolox_x_mot20_ablation

在DanceTrack上训练的模型可以在以下位置获取:谷歌云盘:yolox_x_dancetrack或百度网盘:yolox_x_dancetrack,提取码:sptk

训练

所有训练都在统一的脚本上进行。你需要在register_data.py中更改VAL_JSONVAL_PATH,然后按如下方式运行:

# 在MOT17、CrowdHuman、ETHZ、Citypersons上训练,在MOT17训练集上评估。
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --num-gpus 4  --config-file mot17_train_config.py 

# 在MOT20、CrowdHuman上训练,在MOT20训练集上评估。
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --num-gpus 4  --config-file mot20_train_config.py 

注意: 对于MOT20,你需要将边界框裁剪在图像内。

data_augment.py的第138-139行,mosaicdetection.py的第118-121行和第213-221行,以及boxes.py的第115-118行添加裁剪操作。

跟踪

所有跟踪实验脚本都按以下方式运行。首先将模型权重放在**<ROOT/SparseTrack/pretrain/>中,并在register_data.py中更改VAL_JSONVAL_PATH**。

# 在mot17训练集或测试集上跟踪
CUDA_VISIBLE_DEVICES=0 python3 track.py  --num-gpus 1  --config-file mot17_track_cfg.py 

# 在mot20训练集或测试集上跟踪
CUDA_VISIBLE_DEVICES=0 python3 track.py  --num-gpus 1  --config-file mot20_track_cfg.py 

# 在mot17验证集一半上跟踪
CUDA_VISIBLE_DEVICES=0 python3 track.py  --num-gpus 1  --config-file mot17_ab_track_cfg.py 

# 在mot20验证集一半上跟踪
CUDA_VISIBLE_DEVICES=0 python3 track.py  --num-gpus 1  --config-file mot20_ab_track_cfg.py

在dancetrack测试集上跟踪

步骤1:请注释掉sparse_tracker.py中的第368-373行,并将低分匹配阶段的阈值从0.3修改为0.35(在sparse_tracker.py的第402行)。

步骤2:运行:

CUDA_VISIBLE_DEVICES=0 python3 track.py  --num-gpus 1  --config-file dancetrack_sparse_cfg.py

引用

如果你发现SparseTrack在你的研究或应用中有用,请考虑给我们一个星标🌟并引用它,使用以下BibTeX条目。

@inproceedings{SparseTrack, title={SparseTrack: Multi-Object Tracking by Performing Scene Decomposition based on Pseudo-Depth}, author={Liu, Zelin and Wang, Xinggang and Wang, Cheng and Liu, Wenyu and Bai, Xiang}, journal={arXiv preprint arXiv:2306.05238}, year={2023} }

致谢

大部分代码借鉴自YOLOXFairMOTByteTrackBoT-SORTDetectron2。 非常感谢他们的出色工作。

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成热门AI工具AI图像AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多