
用于大型语言模型微调和对齐的开源工具库
TRL是一个开源的全栈工具库,专用于大型语言模型的微调和对齐。它支持监督式微调、奖励建模和近端策略优化等方法,适用于多种模型架构。该库基于Transformers构建,提供灵活的训练器和自动模型类,并集成Accelerate、PEFT等工具实现高效扩展。TRL还提供命令行界面,方便用户进行模型微调和交互。
<p align="center"> <a href="https://github.com/huggingface/trl/blob/main/LICENSE"> <img alt="许可证" src="https://yellow-cdn.veclightyear.com/835a84d5/9312ee2b-bca5-4b9a-9373-036019c36a43.svg?color=blue"> </a> <a href="https://huggingface.co/docs/trl/index"> <img alt="文档" src="https://yellow-cdn.veclightyear.com/835a84d5/8aa2f4cb-f92a-44af-a1ce-5e6e2a296e07.svg?down_color=red&down_message=离线&up_message=在线"> </a> <a href="https://github.com/huggingface/trl/releases"> <img alt="GitHub 发布" src="https://yellow-cdn.veclightyear.com/835a84d5/00fef457-18b8-4ed5-955e-47df2124a331.svg"> </a> </p>用于微调和对齐大型语言模型的全栈库。
trl 库是一个全栈工具,用于使用监督微调步骤(SFT)、奖励建模(RM)和近端策略优化(PPO)以及直接偏好优化(DPO)等方法来微调和对齐 transformer 语言和扩散模型。
该库构建在 transformers 库之上,因此允许使用那里可用的任何模型架构。
高效且可扩展:
accelerate 是 trl 的核心,它允许使用 DDP 和 DeepSpeed 等方法将模型训练从单个 GPU 扩展到大规模多节点集群。PEFT 已完全集成,允许通过量化和 LoRA 或 QLoRA 等方法在普通硬件上训练甚至最大的模型。unsloth 也已集成,允许使用专用内核显著加快训练速度。命令行界面:使用命令行界面,您可以通过单个命令和灵活的配置系统微调和与 LLM 聊天,无需编写任何代码。训练器:Trainer 类是一个抽象,可以轻松应用许多微调方法,如 SFTTrainer、DPOTrainer、RewardTrainer、PPOTrainer、CPOTrainer 和 ORPOTrainer。自动模型:AutoModelForCausalLMWithValueHead 和 AutoModelForSeq2SeqLMWithValueHead 类为模型添加了一个额外的价值头,允许使用 PPO 等强化学习算法进行训练。示例:使用 BERT 情感分类器训练 GPT2 生成正面电影评论,仅使用适配器进行完整的 RLHF,训练 GPT-j 减少毒性,StackLlama 示例等,参照示例。使用 pip 安装库:
pip install trl
如果您想在官方发布之前使用最新功能,可以从源代码安装:
pip install git+https://github.com/huggingface/trl.git
如果您想使用示例,可以使用以下命令克隆仓库:
git clone https://github.com/huggingface/trl.git
您可以使用 TRL 命令行界面(CLI)快速开始监督微调(SFT)、直接偏好优化(DPO),并使用聊天 CLI 测试您对齐的模型:
SFT:
trl sft --model_name_or_path facebook/opt-125m --dataset_name imdb --output_dir opt-sft-imdb
DPO:
trl dpo --model_name_or_path facebook/opt-125m --dataset_name trl-internal-testing/hh-rlhf-helpful-base-trl-style --output_dir opt-sft-hh-rlhf
聊天:
trl chat --model_name_or_path Qwen/Qwen1.5-0.5B-Chat
在相关文档部分阅读更多关于 CLI 的信息,或使用 --help 获取更多详细信息。
为了获得更大的灵活性和对训练的控制,您可以在 Python 中使用专用的训练器类来微调模型。
SFTTrainer这是一个关于如何使用库中的SFTTrainer的基本示例。SFTTrainer是对transformers训练器的轻量级封装,用于在自定义数据集上轻松微调语言模型或适配器。
# 导入 from datasets import load_dataset from trl import SFTTrainer # 获取数据集 dataset = load_dataset("imdb", split="train") # 获取训练器 trainer = SFTTrainer( "facebook/opt-350m", train_dataset=dataset, dataset_text_field="text", max_seq_length=512, ) # 训练 trainer.train()
RewardTrainer这是一个关于如何使用库中的RewardTrainer的基本示例。RewardTrainer是对transformers训练器的封装,用于在自定义偏好数据集上轻松微调奖励模型或适配器。
# 导入 from transformers import AutoModelForSequenceClassification, AutoTokenizer from trl import RewardTrainer # 加载模型和数据集 - 数据集需要采用特定格式 model = AutoModelForSequenceClassification.from_pretrained("gpt2", num_labels=1) tokenizer = AutoTokenizer.from_pretrained("gpt2") ... # 加载训练器 trainer = RewardTrainer( model=model, tokenizer=tokenizer, train_dataset=dataset, ) # 训练 trainer.train()
PPOTrainer这是一个关于如何使用库中的PPOTrainer的基本示例。基于查询,语言模型创建一个响应,然后对其进行评估。评估可以是人在循环中进行,也可以是另一个模型的输出。
# 导入 import torch from transformers import AutoTokenizer from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead, create_reference_model from trl.core import respond_to_batch # 获取模型 model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2') ref_model = create_reference_model(model) tokenizer = AutoTokenizer.from_pretrained('gpt2') tokenizer.pad_token = tokenizer.eos_token # 初始化训练器 ppo_config = PPOConfig(batch_size=1, mini_batch_size=1) # 编码查询 query_txt = "今天早上我去了" query_tensor = tokenizer.encode(query_txt, return_tensors="pt") # 获取模型响应 response_tensor = respond_to_batch(model, query_tensor) # 创建PPO训练器 ppo_trainer = PPOTrainer(ppo_config, model, ref_model, tokenizer) # 为响应定义奖励 # (这可以是任何奖励,如人类反馈或另一个模型的输出) reward = [torch.tensor(1.0)] # 使用PPO训练模型一步 train_stats = ppo_trainer.step([query_tensor[0]], [response_tensor[0]], reward)
DPOTrainerDPOTrainer是一个使用直接偏好优化算法的训练器。这是一个关于如何使用库中的DPOTrainer的基本示例。DPOTrainer是对transformers训练器的封装,用于在自定义偏好数据集上轻松微调奖励模型或适配器。
# 导入 from transformers import AutoModelForCausalLM, AutoTokenizer from trl import DPOTrainer # 加载模型和数据集 - 数据集需要采用特定格式 model = AutoModelForCausalLM.from_pretrained("gpt2") tokenizer = AutoTokenizer.from_pretrained("gpt2") ... # 加载训练器 trainer = DPOTrainer( model=model, tokenizer=tokenizer, train_dataset=dataset, ) # 训练 trainer.train()
如果你想为trl做贡献或根据自己的需求进行定制,请确保阅读贡献指南并进行开发安装:
git clone https://github.com/huggingface/trl.git cd trl/ make dev
PPO实现主要遵循D. Ziegler等人在论文**"Fine-Tuning Language Models from Human Preferences"**中介绍的结构。[论文, 代码]。
DPO基于E. Mitchell等人的**"Direct Preference Optimization: Your Language Model is Secretly a Reward Model"**的原始实现。[论文, 代码]
@misc{vonwerra2022trl, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang}, title = {TRL: Transformer Reinforcement Learning}, year = {2020}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/huggingface/trl}} }


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追 星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求 ,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号