
全面的PyTorch图像模型集合
pytorch-image-models是一个综合性PyTorch图像模型库,提供最新计算机视觉模型、预训练权重和训练脚本。库中包含CNN和Transformer等多种架构,支持迁移学习和特征提取。项目不断更新,近期新增MobileNetV4模型并优化现有模型性能。该库为计算机视觉研究和开发提供了丰富的工具和资源。
❗Updates after Oct 10, 2022 are available in version >= 0.9❗
timm.models.layers moved to timm.layers:
from timm.models.layers import name will still work via deprecation mapping (but please transition to timm.layers).import timm.models.layers.module or from timm.models.layers.module import name needs to be changed now.timm.models have a _ prefix added, ie timm.models.helpers -> timm.models._helpers, there are temporary deprecation mapping files but those will be removed.architecture.pretrained_tag naming (ex resnet50.rsb_a1).
architecture defaults to the first weights in the default_cfgs for that model architecture.vit_base_patch16_224_in21k -> vit_base_patch16_224.augreg_in21k). There are deprecation mappings for these.features_only=True, there are checkpoint_filter_fn methods in any model module that was remapped. These can be passed to timm.models.load_checkpoint(..., filter_fn=timm.models.swin_transformer_v2.checkpoint_filter_fn) to remap your existing checkpoint.timm weights. Model cards include link to papers, original source, license.mobilenet_edgetpu_v2_m weights w/ ra4 mnv4-small based recipe. 80.1% top-1 @ 224 and 80.7 @ 256.| model | top1 | top1_err | top5 | top5_err | param_count | img_size |
|---|---|---|---|---|---|---|
| mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k | 84.99 | 15.01 | 97.294 | 2.706 | 32.59 | 544 |
| mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k | 84.772 | 15.228 | 97.344 | 2.656 | 32.59 | 480 |
| mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k | 84.64 | 15.36 | 97.114 | 2.886 | 32.59 | 448 |
| mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k | 84.314 | 15.686 | 97.102 | 2.898 | 32.59 | 384 |
| mobilenetv4_conv_aa_large.e600_r384_in1k | 83.824 | 16.176 | 96.734 | 3.266 | 32.59 | 480 |
| mobilenetv4_conv_aa_large.e600_r384_in1k | 83.244 | 16.756 | 96.392 | 3.608 | 32.59 | 384 |
| mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k | 82.99 | 17.01 | 96.67 | 3.33 | 11.07 | 320 |
| mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k | 82.364 | 17.636 | 96.256 | 3.744 | 11.07 | 256 |
| model | top1 | top1_err | top5 | top5_err | param_count | img_size |
|---|---|---|---|---|---|---|
| efficientnet_b0.ra4_e3600_r224_in1k | 79.364 | 20.636 | 94.754 | 5.246 | 5.29 | 256 |
| efficientnet_b0.ra4_e3600_r224_in1k | 78.584 | 21.416 | 94.338 | 5.662 | 5.29 | 224 |
| mobilenetv1_100h.ra4_e3600_r224_in1k | 76.596 | 23.404 | 93.272 | 6.728 | 5.28 | 256 |
| mobilenetv1_100.ra4_e3600_r224_in1k | 76.094 | 23.906 | 93.004 | 6.996 | 4.23 | 256 |
| mobilenetv1_100h.ra4_e3600_r224_in1k | 75.662 | 24.338 | 92.504 | 7.496 | 5.28 | 224 |
| mobilenetv1_100.ra4_e3600_r224_in1k | 75.382 | 24.618 | 92.312 | 7.688 | 4.23 | 224 |
set_input_size() added to vit and swin v1/v2 models to allow changing image size, patch size, window size after model creation.set_input_size, always_partition and strict_img_size args have been added to __init__ to allow more flexible input size constraintstiny < .5M param models for testing that are actually trained on ImageNet-1k| model | top1 | top1_err | top5 | top5_err | param_count | img_size | crop_pct |
|---|---|---|---|---|---|---|---|
| test_efficientnet.r160_in1k | 47.156 | 52.844 | 71.726 | 28.274 | 0.36 | 192 | 1.0 |
| test_byobnet.r160_in1k | 46.698 | 53.302 | 71.674 | 28.326 | 0.46 | 192 | 1.0 |
| test_efficientnet.r160_in1k | 46.426 | 53.574 | 70.928 | 29.072 | 0.36 | 160 | 0.875 |
| test_byobnet.r160_in1k | 45.378 | 54.622 | 70.572 | 29.428 | 0.46 | 160 | 0.875 |
| test_vit.r160_in1k | 42.0 | 58.0 | 68.664 | 31.336 | 0.37 | 192 | 1.0 |
| test_vit.r160_in1k | 40.822 | 59.178 | 67.212 | 32.788 | 0.37 | 160 | 0.875 |
| model | top1 | top1_err | top5 | top5_err | param_count | img_size |
|---|---|---|---|---|---|---|
| mobilenetv4_hybrid_large.ix_e600_r384_in1k | 84.356 | 15.644 | 96.892 | 3.108 | 37.76 | 448 |
| mobilenetv4_hybrid_large.ix_e600_r384_in1k | 83.990 | 16.010 | 96.702 | 3.298 | 37.76 | 384 |
| mobilenetv4_hybrid_medium.ix_e550_r384_in1k | 83.394 | 16.606 | 96.760 | 3.240 | 11.07 | 448 |
| mobilenetv4_hybrid_medium.ix_e550_r384_in1k | 82.968 | 17.032 | 96.474 | 3.526 | 11.07 | 384 |
| mobilenetv4_hybrid_medium.ix_e550_r256_in1k | 82.492 | 17.508 | 96.278 | 3.722 | 11.07 | 320 |
| mobilenetv4_hybrid_medium.ix_e550_r256_in1k | 81.446 | 18.554 | 95.704 | 4.296 | 11.07 | 256 |
timm trained weights added:

最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个 国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免 费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。