基于指令微调的Stable Diffusion图像编辑模型
该项目探索了一种指令微调Stable Diffusion模型的方法,使其能够根据输入图像和特定指令进行图像编辑。结合FLAN和InstructPix2Pix的思想,项目通过构建指令数据集和训练,提升了模型执行图像转换任务的能力。研究涵盖卡通化和低级图像处理,并开源了相关代码、模型和数据集。
TL;DR: Motivated partly by FLAN and partly by InstructPix2Pix, we explore a way to instruction-tune Stable Diffusion. This allows us to prompt our model using an input image and an “instruction”, such as - Apply a cartoon filter to the natural image.
You can read our blog post to know more details.
🐶 Motivation <br> 📷 Data preparation <br> 💺 Training <br> 🎛 Models, datasets, demo <br> ⭐️ Inference <br> 🧭 Results <br> 🤝 Acknowledgements <br>
Instruction-tuning is a supervised way of teaching language models to follow instructions to solve a task. It was introduced in Fine-tuned Language Models Are Zero-Shot Learners (FLAN) by Google. From recent times, you might recall works like Alpaca and FLAN V2, which are good examples of how beneficial instruction-tuning can be for various tasks.
On the other hand, the idea of teaching Stable Diffusion to follow user instructions to perform edits on input images was introduced in InstructPix2Pix: Learning to Follow Image Editing Instructions.
Our motivation behind this work comes partly from the FLAN line of works and partly from InstructPix2Pix. We wanted to explore if it’s possible to prompt Stable Diffusion with specific instructions and input images to process them as per our needs.
<p align="center"> <img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/instruction-tuning-sd.png" width=600/> </p>Our main idea is to first create an instruction prompted dataset (as described in our blog and then conduct InstructPix2Pix style training. The end objective is to make Stable Diffusion better at following specific instructions that entail image transformation related operations.
Our data preparation process is inspired by FLAN. Refer to the sections below for more details.
data_preparation
directory.[!TIP] In case of using custom datasets, one needs to configure the dataset as per their choice as long as you maintain the format presented here. You might have to configure your dataloader and dataset class in case you don't want to make use of the
datasets
library. If you do so, you might have to adjust the training scripts accordingly.
We recommend using a Python virtual environment for this. Feel free to use your favorite one here.
We conducted our experiments with PyTorch 1.13.1 (CUDA 11.6) and a single A100 GPU. Since PyTorch installation can be hardware-dependent, we refer you to the official docs for installing PyTorch.
Once PyTorch is installed, we can install the rest of the dependencies:
pip install -r requirements.txt
Additionally, we recommend installing xformers as well for enabling memory-efficient training.
💡 Note: If you're using PyTorch 2.0 then you don't need to additionally install xformers. This is because we default to a memory-efficient attention processor in Diffusers when PyTorch 2.0 is being used.
Our training code leverages 🧨 diffusers, 🤗 accelerate, and 🤗 transformers. In particular, we extend this training example to fit our needs.
export MODEL_ID="runwayml/stable-diffusion-v1-5" export DATASET_ID="instruction-tuning-sd/cartoonization" export OUTPUT_DIR="cartoonization-scratch" accelerate launch --mixed_precision="fp16" train_instruct_pix2pix.py \ --pretrained_model_name_or_path=$MODEL_ID \ --dataset_name=$DATASET_ID \ --use_ema \ --enable_xformers_memory_efficient_attention \ --resolution=256 --random_flip \ --train_batch_size=2 --gradient_accumulation_steps=4 --gradient_checkpointing \ --max_train_steps=15000 \ --checkpointing_steps=5000 --checkpoints_total_limit=1 \ --learning_rate=5e-05 --lr_warmup_steps=0 \ --mixed_precision=fp16 \ --val_image_url="https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" \ --validation_prompt="Generate a cartoonized version of the natural image" \ --seed=42 \ --output_dir=$OUTPUT_DIR \ --report_to=wandb \ --push_to_hub
💡 Note: Following InstructPix2Pix, we train on the 256x256 resolution and that doesn't seem to affect the end quality too much when we perform inference with the 512x512 resolution.
Once the training successfully launched, the logs will be automatically tracked using Weights and Biases. Depending on how you specified the checkpointing_steps
and the max_train_steps
, there will be intermediate checkpoints too. At the end of training, you can expect a directory (namely OUTPUT_DIR
) that contains the intermediate checkpoints and the final pipeline artifacts.
If --push_to_hub
is specified, the contents of OUTPUT_DIR
will be pushed to a repository on the Hugging Face Hub.
Here is an example run page on Weights and Biases. Here is an example of how the pipeline repository would look like on the Hugging Face Hub.
export MODEL_ID="timbrooks/instruct-pix2pix" export DATASET_ID="instruction-tuning-sd/cartoonization" export OUTPUT_DIR="cartoonization-finetuned" accelerate launch --mixed_precision="fp16" finetune_instruct_pix2pix.py \ --pretrained_model_name_or_path=$MODEL_ID \ --dataset_name=$DATASET_ID \ --use_ema \ --enable_xformers_memory_efficient_attention \ --resolution=256 --random_flip \ --train_batch_size=2 --gradient_accumulation_steps=4 --gradient_checkpointing \ --max_train_steps=15000 \ --checkpointing_steps=5000 --checkpoints_total_limit=1 \ --learning_rate=5e-05 --lr_warmup_steps=0 \ --mixed_precision=fp16 \ --val_image_url="https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" \ --validation_prompt="Generate a cartoonized version of the natural image" \ --seed=42 \ --output_dir=$OUTPUT_DIR \ --report_to=wandb \ --push_to_hub
export MODEL_ID="runwayml/stable-diffusion-v1-5" export DATASET_ID="instruction-tuning-sd/low-level-image-proc" export OUTPUT_DIR="low-level-img-proc-scratch" accelerate launch --mixed_precision="fp16" train_instruct_pix2pix.py \ --pretrained_model_name_or_path=$MODEL_ID \ --dataset_name=$DATASET_ID \ --original_image_column="input_image" \ --edit_prompt_column="instruction" \ --edited_image_column="ground_truth_image" \ --use_ema \ --enable_xformers_memory_efficient_attention \ --resolution=256 --random_flip \ --train_batch_size=2 --gradient_accumulation_steps=4 --gradient_checkpointing \ --max_train_steps=15000 \ --checkpointing_steps=5000 --checkpoints_total_limit=1 \ --learning_rate=5e-05 --lr_warmup_steps=0 \ --mixed_precision=fp16 \ --val_image_url="https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/derain_the_image_1.png" \ --validation_prompt="Derain the image" \ --seed=42 \ --output_dir=$OUTPUT_DIR \ --report_to=wandb \ --push_to_hub
export MODEL_ID="timbrooks/instruct-pix2pix" export DATASET_ID="instruction-tuning-sd/low-level-image-proc" export OUTPUT_DIR="low-level-img-proc-finetuned" accelerate launch --mixed_precision="fp16" finetune_instruct_pix2pix.py \ --pretrained_model_name_or_path=$MODEL_ID \ --dataset_name=$DATASET_ID \ --original_image_column="input_image" \ --edit_prompt_column="instruction" \ --edited_image_column="ground_truth_image" \ --use_ema \ --enable_xformers_memory_efficient_attention \ --resolution=256 --random_flip \ --train_batch_size=2 --gradient_accumulation_steps=4 --gradient_checkpointing \ --max_train_steps=15000 \ --checkpointing_steps=5000 --checkpoints_total_limit=1 \ --learning_rate=5e-05 --lr_warmup_steps=0 \ --mixed_precision=fp16 \ --val_image_url="https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/derain_the_image_1.png" \ --validation_prompt="Derain the image" \ --seed=42 \ --output_dir=$OUTPUT_DIR \ --report_to=wandb \ --push_to_hub
Try out the models interactively WITHOUT any setup: Demo
import torch from diffusers import StableDiffusionInstructPix2PixPipeline from diffusers.utils import load_image model_id = "instruction-tuning-sd/cartoonizer" pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( model_id, torch_dtype=torch.float16, use_auth_token=True ).to("cuda") image_path = "https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" image = load_image(image_path) image = pipeline("Cartoonize the following image", image=image).images[0] image.save("image.png")
import torch from diffusers import StableDiffusionInstructPix2PixPipeline from diffusers.utils import load_image model_id = "instruction-tuning-sd/low-level-img-proc" pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( model_id, torch_dtype=torch.float16, use_auth_token=True ).to("cuda") image_path = "https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/derain%20the%20image_1.png" image = load_image(image_path) image = pipeline("derain the image", image=image).images[0] image.save("image.png")
💡 Note: Since the above pipelines are essentially of type
StableDiffusionInstructPix2PixPipeline
, you can customize several arguments that the pipeline exposes. Refer to the official docs for more details.
Refer to our blog post for more discussions on results and open questions.
Thanks to Alara Dirik and Zhengzhong Tu for the helpful discussions.
@article{ Paul2023instruction-tuning-sd, author = {Paul, Sayak}, title = {Instruction-tuning Stable Diffusion with InstructPix2Pix}, journal = {Hugging Face Blog}, year = {2023}, note =
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该 项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号