基于指令微调的Stable Diffusion图像编辑模型
该项目探索了一种指令微调Stable Diffusion模型的方法,使其能够根据输入图像和特定指令进行图像编辑。结合FLAN和InstructPix2Pix的思想,项目通过构建指令数据集和训练,提升了模型执行图像转换任务的能力。研究涵盖卡通化和低级图像处理,并开源了相关代码、模型和数据集。
TL;DR: Motivated partly by FLAN and partly by InstructPix2Pix, we explore a way to instruction-tune Stable Diffusion. This allows us to prompt our model using an input image and an “instruction”, such as - Apply a cartoon filter to the natural image.
You can read our blog post to know more details.
🐶 Motivation <br> 📷 Data preparation <br> 💺 Training <br> 🎛 Models, datasets, demo <br> ⭐️ Inference <br> 🧭 Results <br> 🤝 Acknowledgements <br>
Instruction-tuning is a supervised way of teaching language models to follow instructions to solve a task. It was introduced in Fine-tuned Language Models Are Zero-Shot Learners (FLAN) by Google. From recent times, you might recall works like Alpaca and FLAN V2, which are good examples of how beneficial instruction-tuning can be for various tasks.
On the other hand, the idea of teaching Stable Diffusion to follow user instructions to perform edits on input images was introduced in InstructPix2Pix: Learning to Follow Image Editing Instructions.
Our motivation behind this work comes partly from the FLAN line of works and partly from InstructPix2Pix. We wanted to explore if it’s possible to prompt Stable Diffusion with specific instructions and input images to process them as per our needs.
<p align="center"> <img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/instruction-tuning-sd.png" width=600/> </p>Our main idea is to first create an instruction prompted dataset (as described in our blog and then conduct InstructPix2Pix style training. The end objective is to make Stable Diffusion better at following specific instructions that entail image transformation related operations.
Our data preparation process is inspired by FLAN. Refer to the sections below for more details.
data_preparation
directory.[!TIP] In case of using custom datasets, one needs to configure the dataset as per their choice as long as you maintain the format presented here. You might have to configure your dataloader and dataset class in case you don't want to make use of the
datasets
library. If you do so, you might have to adjust the training scripts accordingly.
We recommend using a Python virtual environment for this. Feel free to use your favorite one here.
We conducted our experiments with PyTorch 1.13.1 (CUDA 11.6) and a single A100 GPU. Since PyTorch installation can be hardware-dependent, we refer you to the official docs for installing PyTorch.
Once PyTorch is installed, we can install the rest of the dependencies:
pip install -r requirements.txt
Additionally, we recommend installing xformers as well for enabling memory-efficient training.
💡 Note: If you're using PyTorch 2.0 then you don't need to additionally install xformers. This is because we default to a memory-efficient attention processor in Diffusers when PyTorch 2.0 is being used.
Our training code leverages 🧨 diffusers, 🤗 accelerate, and 🤗 transformers. In particular, we extend this training example to fit our needs.
export MODEL_ID="runwayml/stable-diffusion-v1-5" export DATASET_ID="instruction-tuning-sd/cartoonization" export OUTPUT_DIR="cartoonization-scratch" accelerate launch --mixed_precision="fp16" train_instruct_pix2pix.py \ --pretrained_model_name_or_path=$MODEL_ID \ --dataset_name=$DATASET_ID \ --use_ema \ --enable_xformers_memory_efficient_attention \ --resolution=256 --random_flip \ --train_batch_size=2 --gradient_accumulation_steps=4 --gradient_checkpointing \ --max_train_steps=15000 \ --checkpointing_steps=5000 --checkpoints_total_limit=1 \ --learning_rate=5e-05 --lr_warmup_steps=0 \ --mixed_precision=fp16 \ --val_image_url="https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" \ --validation_prompt="Generate a cartoonized version of the natural image" \ --seed=42 \ --output_dir=$OUTPUT_DIR \ --report_to=wandb \ --push_to_hub
💡 Note: Following InstructPix2Pix, we train on the 256x256 resolution and that doesn't seem to affect the end quality too much when we perform inference with the 512x512 resolution.
Once the training successfully launched, the logs will be automatically tracked using Weights and Biases. Depending on how you specified the checkpointing_steps
and the max_train_steps
, there will be intermediate checkpoints too. At the end of training, you can expect a directory (namely OUTPUT_DIR
) that contains the intermediate checkpoints and the final pipeline artifacts.
If --push_to_hub
is specified, the contents of OUTPUT_DIR
will be pushed to a repository on the Hugging Face Hub.
Here is an example run page on Weights and Biases. Here is an example of how the pipeline repository would look like on the Hugging Face Hub.
export MODEL_ID="timbrooks/instruct-pix2pix" export DATASET_ID="instruction-tuning-sd/cartoonization" export OUTPUT_DIR="cartoonization-finetuned" accelerate launch --mixed_precision="fp16" finetune_instruct_pix2pix.py \ --pretrained_model_name_or_path=$MODEL_ID \ --dataset_name=$DATASET_ID \ --use_ema \ --enable_xformers_memory_efficient_attention \ --resolution=256 --random_flip \ --train_batch_size=2 --gradient_accumulation_steps=4 --gradient_checkpointing \ --max_train_steps=15000 \ --checkpointing_steps=5000 --checkpoints_total_limit=1 \ --learning_rate=5e-05 --lr_warmup_steps=0 \ --mixed_precision=fp16 \ --val_image_url="https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" \ --validation_prompt="Generate a cartoonized version of the natural image" \ --seed=42 \ --output_dir=$OUTPUT_DIR \ --report_to=wandb \ --push_to_hub
export MODEL_ID="runwayml/stable-diffusion-v1-5" export DATASET_ID="instruction-tuning-sd/low-level-image-proc" export OUTPUT_DIR="low-level-img-proc-scratch" accelerate launch --mixed_precision="fp16" train_instruct_pix2pix.py \ --pretrained_model_name_or_path=$MODEL_ID \ --dataset_name=$DATASET_ID \ --original_image_column="input_image" \ --edit_prompt_column="instruction" \ --edited_image_column="ground_truth_image" \ --use_ema \ --enable_xformers_memory_efficient_attention \ --resolution=256 --random_flip \ --train_batch_size=2 --gradient_accumulation_steps=4 --gradient_checkpointing \ --max_train_steps=15000 \ --checkpointing_steps=5000 --checkpoints_total_limit=1 \ --learning_rate=5e-05 --lr_warmup_steps=0 \ --mixed_precision=fp16 \ --val_image_url="https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/derain_the_image_1.png" \ --validation_prompt="Derain the image" \ --seed=42 \ --output_dir=$OUTPUT_DIR \ --report_to=wandb \ --push_to_hub
export MODEL_ID="timbrooks/instruct-pix2pix" export DATASET_ID="instruction-tuning-sd/low-level-image-proc" export OUTPUT_DIR="low-level-img-proc-finetuned" accelerate launch --mixed_precision="fp16" finetune_instruct_pix2pix.py \ --pretrained_model_name_or_path=$MODEL_ID \ --dataset_name=$DATASET_ID \ --original_image_column="input_image" \ --edit_prompt_column="instruction" \ --edited_image_column="ground_truth_image" \ --use_ema \ --enable_xformers_memory_efficient_attention \ --resolution=256 --random_flip \ --train_batch_size=2 --gradient_accumulation_steps=4 --gradient_checkpointing \ --max_train_steps=15000 \ --checkpointing_steps=5000 --checkpoints_total_limit=1 \ --learning_rate=5e-05 --lr_warmup_steps=0 \ --mixed_precision=fp16 \ --val_image_url="https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/derain_the_image_1.png" \ --validation_prompt="Derain the image" \ --seed=42 \ --output_dir=$OUTPUT_DIR \ --report_to=wandb \ --push_to_hub
Try out the models interactively WITHOUT any setup: Demo
import torch from diffusers import StableDiffusionInstructPix2PixPipeline from diffusers.utils import load_image model_id = "instruction-tuning-sd/cartoonizer" pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( model_id, torch_dtype=torch.float16, use_auth_token=True ).to("cuda") image_path = "https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" image = load_image(image_path) image = pipeline("Cartoonize the following image", image=image).images[0] image.save("image.png")
import torch from diffusers import StableDiffusionInstructPix2PixPipeline from diffusers.utils import load_image model_id = "instruction-tuning-sd/low-level-img-proc" pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( model_id, torch_dtype=torch.float16, use_auth_token=True ).to("cuda") image_path = "https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/derain%20the%20image_1.png" image = load_image(image_path) image = pipeline("derain the image", image=image).images[0] image.save("image.png")
💡 Note: Since the above pipelines are essentially of type
StableDiffusionInstructPix2PixPipeline
, you can customize several arguments that the pipeline exposes. Refer to the official docs for more details.
Refer to our blog post for more discussions on results and open questions.
Thanks to Alara Dirik and Zhengzhong Tu for the helpful discussions.
@article{ Paul2023instruction-tuning-sd, author = {Paul, Sayak}, title = {Instruction-tuning Stable Diffusion with InstructPix2Pix}, journal = {Hugging Face Blog}, year = {2023}, note =
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合 参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能 美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号