instruction-tuned-sd

instruction-tuned-sd

基于指令微调的Stable Diffusion图像编辑模型

该项目探索了一种指令微调Stable Diffusion模型的方法,使其能够根据输入图像和特定指令进行图像编辑。结合FLAN和InstructPix2Pix的思想,项目通过构建指令数据集和训练,提升了模型执行图像转换任务的能力。研究涵盖卡通化和低级图像处理,并开源了相关代码、模型和数据集。

Stable Diffusion指令微调图像处理卡通化低级图像处理Github开源项目

Instruction-tuning Stable Diffusion

TL;DR: Motivated partly by FLAN and partly by InstructPix2Pix, we explore a way to instruction-tune Stable Diffusion. This allows us to prompt our model using an input image and an “instruction”, such as - Apply a cartoon filter to the natural image.

You can read our blog post to know more details.

Table of contents

🐶 Motivation <br> 📷 Data preparation <br> 💺 Training <br> 🎛 Models, datasets, demo <br> ⭐️ Inference <br> 🧭 Results <br> 🤝 Acknowledgements <br>

Motivation

Instruction-tuning is a supervised way of teaching language models to follow instructions to solve a task. It was introduced in Fine-tuned Language Models Are Zero-Shot Learners (FLAN) by Google. From recent times, you might recall works like Alpaca and FLAN V2, which are good examples of how beneficial instruction-tuning can be for various tasks.

On the other hand, the idea of teaching Stable Diffusion to follow user instructions to perform edits on input images was introduced in InstructPix2Pix: Learning to Follow Image Editing Instructions.

Our motivation behind this work comes partly from the FLAN line of works and partly from InstructPix2Pix. We wanted to explore if it’s possible to prompt Stable Diffusion with specific instructions and input images to process them as per our needs.

<p align="center"> <img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/instruction-tuning-sd.png" width=600/> </p>

Our main idea is to first create an instruction prompted dataset (as described in our blog and then conduct InstructPix2Pix style training. The end objective is to make Stable Diffusion better at following specific instructions that entail image transformation related operations.

Data preparation

Our data preparation process is inspired by FLAN. Refer to the sections below for more details.

  • Cartoonization: Refer to the data_preparation directory.
  • Low-level image processing: Refer to the dataset card.

Training

[!TIP] In case of using custom datasets, one needs to configure the dataset as per their choice as long as you maintain the format presented here. You might have to configure your dataloader and dataset class in case you don't want to make use of the datasets library. If you do so, you might have to adjust the training scripts accordingly.

Dev env setup

We recommend using a Python virtual environment for this. Feel free to use your favorite one here.

We conducted our experiments with PyTorch 1.13.1 (CUDA 11.6) and a single A100 GPU. Since PyTorch installation can be hardware-dependent, we refer you to the official docs for installing PyTorch.

Once PyTorch is installed, we can install the rest of the dependencies:

pip install -r requirements.txt

Additionally, we recommend installing xformers as well for enabling memory-efficient training.

💡 Note: If you're using PyTorch 2.0 then you don't need to additionally install xformers. This is because we default to a memory-efficient attention processor in Diffusers when PyTorch 2.0 is being used.

Launching training

Our training code leverages 🧨 diffusers, 🤗 accelerate, and 🤗 transformers. In particular, we extend this training example to fit our needs.

Cartoonization

Training from scratch using the InstructPix2Pix methodology

export MODEL_ID="runwayml/stable-diffusion-v1-5" export DATASET_ID="instruction-tuning-sd/cartoonization" export OUTPUT_DIR="cartoonization-scratch" accelerate launch --mixed_precision="fp16" train_instruct_pix2pix.py \ --pretrained_model_name_or_path=$MODEL_ID \ --dataset_name=$DATASET_ID \ --use_ema \ --enable_xformers_memory_efficient_attention \ --resolution=256 --random_flip \ --train_batch_size=2 --gradient_accumulation_steps=4 --gradient_checkpointing \ --max_train_steps=15000 \ --checkpointing_steps=5000 --checkpoints_total_limit=1 \ --learning_rate=5e-05 --lr_warmup_steps=0 \ --mixed_precision=fp16 \ --val_image_url="https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" \ --validation_prompt="Generate a cartoonized version of the natural image" \ --seed=42 \ --output_dir=$OUTPUT_DIR \ --report_to=wandb \ --push_to_hub

💡 Note: Following InstructPix2Pix, we train on the 256x256 resolution and that doesn't seem to affect the end quality too much when we perform inference with the 512x512 resolution.

Once the training successfully launched, the logs will be automatically tracked using Weights and Biases. Depending on how you specified the checkpointing_steps and the max_train_steps, there will be intermediate checkpoints too. At the end of training, you can expect a directory (namely OUTPUT_DIR) that contains the intermediate checkpoints and the final pipeline artifacts.

If --push_to_hub is specified, the contents of OUTPUT_DIR will be pushed to a repository on the Hugging Face Hub.

Here is an example run page on Weights and Biases. Here is an example of how the pipeline repository would look like on the Hugging Face Hub.

Fine-tuning from InstructPix2Pix

export MODEL_ID="timbrooks/instruct-pix2pix" export DATASET_ID="instruction-tuning-sd/cartoonization" export OUTPUT_DIR="cartoonization-finetuned" accelerate launch --mixed_precision="fp16" finetune_instruct_pix2pix.py \ --pretrained_model_name_or_path=$MODEL_ID \ --dataset_name=$DATASET_ID \ --use_ema \ --enable_xformers_memory_efficient_attention \ --resolution=256 --random_flip \ --train_batch_size=2 --gradient_accumulation_steps=4 --gradient_checkpointing \ --max_train_steps=15000 \ --checkpointing_steps=5000 --checkpoints_total_limit=1 \ --learning_rate=5e-05 --lr_warmup_steps=0 \ --mixed_precision=fp16 \ --val_image_url="https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" \ --validation_prompt="Generate a cartoonized version of the natural image" \ --seed=42 \ --output_dir=$OUTPUT_DIR \ --report_to=wandb \ --push_to_hub

Low-level image processing

Training from scratch using the InstructPix2Pix methodology

export MODEL_ID="runwayml/stable-diffusion-v1-5" export DATASET_ID="instruction-tuning-sd/low-level-image-proc" export OUTPUT_DIR="low-level-img-proc-scratch" accelerate launch --mixed_precision="fp16" train_instruct_pix2pix.py \ --pretrained_model_name_or_path=$MODEL_ID \ --dataset_name=$DATASET_ID \ --original_image_column="input_image" \ --edit_prompt_column="instruction" \ --edited_image_column="ground_truth_image" \ --use_ema \ --enable_xformers_memory_efficient_attention \ --resolution=256 --random_flip \ --train_batch_size=2 --gradient_accumulation_steps=4 --gradient_checkpointing \ --max_train_steps=15000 \ --checkpointing_steps=5000 --checkpoints_total_limit=1 \ --learning_rate=5e-05 --lr_warmup_steps=0 \ --mixed_precision=fp16 \ --val_image_url="https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/derain_the_image_1.png" \ --validation_prompt="Derain the image" \ --seed=42 \ --output_dir=$OUTPUT_DIR \ --report_to=wandb \ --push_to_hub

Fine-tuning from InstructPix2Pix

export MODEL_ID="timbrooks/instruct-pix2pix" export DATASET_ID="instruction-tuning-sd/low-level-image-proc" export OUTPUT_DIR="low-level-img-proc-finetuned" accelerate launch --mixed_precision="fp16" finetune_instruct_pix2pix.py \ --pretrained_model_name_or_path=$MODEL_ID \ --dataset_name=$DATASET_ID \ --original_image_column="input_image" \ --edit_prompt_column="instruction" \ --edited_image_column="ground_truth_image" \ --use_ema \ --enable_xformers_memory_efficient_attention \ --resolution=256 --random_flip \ --train_batch_size=2 --gradient_accumulation_steps=4 --gradient_checkpointing \ --max_train_steps=15000 \ --checkpointing_steps=5000 --checkpoints_total_limit=1 \ --learning_rate=5e-05 --lr_warmup_steps=0 \ --mixed_precision=fp16 \ --val_image_url="https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/derain_the_image_1.png" \ --validation_prompt="Derain the image" \ --seed=42 \ --output_dir=$OUTPUT_DIR \ --report_to=wandb \ --push_to_hub

Models, datasets, demo

Models:

Datasets:

Demo on 🤗 Spaces

Try out the models interactively WITHOUT any setup: Demo

Inference

Cartoonization

import torch from diffusers import StableDiffusionInstructPix2PixPipeline from diffusers.utils import load_image model_id = "instruction-tuning-sd/cartoonizer" pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( model_id, torch_dtype=torch.float16, use_auth_token=True ).to("cuda") image_path = "https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" image = load_image(image_path) image = pipeline("Cartoonize the following image", image=image).images[0] image.save("image.png")

Low-level image processing

import torch from diffusers import StableDiffusionInstructPix2PixPipeline from diffusers.utils import load_image model_id = "instruction-tuning-sd/low-level-img-proc" pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( model_id, torch_dtype=torch.float16, use_auth_token=True ).to("cuda") image_path = "https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/derain%20the%20image_1.png" image = load_image(image_path) image = pipeline("derain the image", image=image).images[0] image.save("image.png")

💡 Note: Since the above pipelines are essentially of type StableDiffusionInstructPix2PixPipeline, you can customize several arguments that the pipeline exposes. Refer to the official docs for more details.

Results

Cartoonization

<p align="center"> <img src="https://i.imgur.com/wOCjpdI.jpg"/> </p>
<p align="center"> <img src="https://i.imgur.com/RhTG8Lf.jpg"/> </p>

Low-level image processing

<p align="center"> <img src="https://i.imgur.com/LOhcJLv.jpg"/> </p>
<p align="center"> <img src="https://i.imgur.com/uhTqIpY.png"/> </p>

Refer to our blog post for more discussions on results and open questions.

Acknowledgements

Thanks to Alara Dirik and Zhengzhong Tu for the helpful discussions.

Citation

@article{ Paul2023instruction-tuning-sd, author = {Paul, Sayak}, title = {Instruction-tuning Stable Diffusion with InstructPix2Pix}, journal = {Hugging Face Blog}, year = {2023}, note =

编辑推荐精选

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
下拉加载更多