awesome-model-quantization

awesome-model-quantization

全面的模型量化研究资源

此项目汇集了关于模型量化的各类论文、文档和代码,为研究者提供丰富的参考资源。内容包括二值化和量化方法的调研、基准测试,以及生成模型的压缩和加速技术。项目持续更新,并欢迎对未收录研究成果的贡献。感谢所有已作出贡献的研究者。

Awesome Model QuantizationBiBenchMQBenchSurvey of QuantizationEfficient_AIGC_RepoGithub开源项目

Awesome Model Quantization Awesome

This repo collects papers, docs, codes about model quantization for anyone who wants to do research on it. We are continuously improving the project. Welcome to PR the works (papers, repositories) that are missed by the repo. Special thanks to Xingyu Zheng, Yifu Ding, Xudong Ma, Yuxuan Wen, and all researchers who have contributed to this project!

Table of Contents

Efficient_AIGC_Repo

We highlight our newly released awesome open-source project "Awesome Efficient AIGC". Specifically, this project focuses on recent methods for compression and acceleration of generative models, such as large language models and diffusion models. Welcome to Star the Repo or PR any work you like!

https://github.com/htqin/awesome-efficient-aigc AwesomeGitHub Repo stars

Benchmark

BiBench

The paper BiBench: Benchmarking and Analyzing Network Binarization (ICML 2023) a rigorously designed benchmark with in-depth analysis for network binarization. For details, please refer to:

BiBench: Benchmarking and Analyzing Network Binarization [Paper] [Project]

Haotong Qin, Mingyuan Zhang, Yifu Ding, Aoyu Li, Zhongang Cai, Ziwei Liu, Fisher Yu, Xianglong Liu.

<details><summary>Bibtex</summary><pre><code>@inproceedings{qin2023bibench, title={BiBench: Benchmarking and Analyzing Network Binarization}, author={Qin, Haotong and Zhang, Mingyuan and Ding, Yifu and Li, Aoyu and Cai, Zhongang and Liu, Ziwei and Yu, Fisher and Liu, Xianglong}, booktitle={International Conference on Machine Learning (ICML)}, year={2023} }</code></pre></details>

survey

MQBench

The paper MQBench: Towards Reproducible and Deployable Model Quantization Benchmark (NeurIPS 2021) is a benchmark and framework for evluating the quantization algorithms under real world hardware deployments. For details, please refer to:

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark [Paper] [Project]

Yuhang Li, Mingzhu Shen, Jian Ma, Yan Ren, Mingxin Zhao, Qi Zhang, Ruihao Gong, Fengwei Yu, Junjie Yan.

<details><summary>Bibtex</summary><pre><code>@article{2021MQBench, title = "MQBench: Towards Reproducible and Deployable Model Quantization Benchmark", author= "Yuhang Li* and Mingzhu Shen* and Jian Ma* and Yan Ren* and Mingxin Zhao* and Qi Zhang* and Ruihao Gong and Fengwei Yu and Junjie Yan", journal = "https://openreview.net/forum?id=TUplOmF8DsM", year = "2021" }</code></pre></details>

survey

Survey_Papers

Survey_of_Binarization

Our survey paper Binary Neural Networks: A Survey (Pattern Recognition) is a comprehensive survey of recent progress in binary neural networks. For details, please refer to:

Binary Neural Networks: A Survey [Paper] [Blog]

Haotong Qin, Ruihao Gong, Xianglong Liu*, Xiao Bai, Jingkuan Song, and Nicu Sebe.

<details><summary>Bibtex</summary><pre><code>@article{Qin:pr20_bnn_survey, title = "Binary neural networks: A survey", author = "Haotong Qin and Ruihao Gong and Xianglong Liu and Xiao Bai and Jingkuan Song and Nicu Sebe", journal = "Pattern Recognition", volume = "105", pages = "107281", year = "2020" }</code></pre></details>

survey

Survey_of_Quantization

The survey paper A Survey of Quantization Methods for Efficient Neural Network Inference (ArXiv) is a comprehensive survey of recent progress in quantization. For details, please refer to:

A Survey of Quantization Methods for Efficient Neural Network Inference [Paper]

Amir Gholami* , Sehoon Kim* , Zhen Dong* , Zhewei Yao* , Michael W. Mahoney, Kurt Keutzer. (* Equal contribution)

<details><summary>Bibtex</summary><pre><code>@misc{gholami2021survey, title={A Survey of Quantization Methods for Efficient Neural Network Inference}, author={Amir Gholami and Sehoon Kim and Zhen Dong and Zhewei Yao and Michael W. Mahoney and Kurt Keutzer}, year={2021}, eprint={2103.13630}, archivePrefix={arXiv}, primaryClass={cs.CV} }</code></pre></details>

Papers

Keywords: qnn: quantized neural networks | bnn: binarized neural networks | hardware: hardware deployment | snn: spiking neural networks | other


2024

  • [arXiv] How Good Are Low-bit Quantized LLaMA3 Models? An Empirical Study [code]GitHub Repo stars [HuggingFace]
  • [arXiv] Accurate LoRA-Finetuning Quantization of LLMs via Information Retention [code]GitHub Repo stars
  • [arXiv] BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [code]GitHub Repo stars
  • [arXiv] BinaryDM: Towards Accurate Binarization of Diffusion Model [code]GitHub Repo stars
  • [arXiv] DB-LLM: Accurate Dual-Binarization for Efficient LLMs
  • [arXiv] BinaryDM: Towards Accurate Binarization of Diffusion Model [code]GitHub Repo stars
  • [arXiv] OHQ: On-chip Hardware-aware Quantization
  • [arXiv] Post-Training Quantization with Low-precision Minifloats and Integers on FPGAs [code][hardware]
  • [arXiv] Extreme Compression of Large Language Models via Additive Quantization
  • [arXiv] Quantized Side Tuning: Fast and Memory-Efficient Tuning of Quantized Large Language Models
  • [arXiv] FP6-LLM: Efficiently Serving Large Language Models Through FP6-Centric Algorithm-System Co-Design
  • [arXiv] KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization
  • [arXiv] EdgeQAT: Entropy and Distribution Guided Quantization-Aware Training for the Acceleration of Lightweight LLMs on the Edge [code] GitHub Repo stars
  • [arXiv] Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs
  • [arXiv] LQER: Low-Rank Quantization Error Reconstruction for LLMs
  • [arXiv] KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [code] GitHub Repo stars
  • [arXiv] QuIP#: Even Better LLM Quantization with Hadamard Incoherence and Lattice Codebooks [code] GitHub Repo stars
  • [arXiv] L4Q: Parameter Efficient Quantization-Aware Training on Large Language Models via LoRA-wise LSQ
  • [arXiv] TP-Aware Dequantization
  • [arXiv] ApiQ: Finetuning of 2-Bit Quantized Large Language Model
  • [arXiv] Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs
  • [arXiv] BitDistiller: Unleashing the Potential of Sub-4-Bit LLMs via Self-Distillation [code] GitHub Repo stars
  • [arXiv] OneBit: Towards Extremely Low-bit Large Language Models
  • [arXiv] WKVQuant: Quantising Weight and Key/Value Cache for Large Language Models Gains More
  • [arXiv] GPTVQ: The Blessing of Dimensionality for LLM Quantization [code] GitHub Repo stars
  • [DAC] APTQ: Attention-aware Post-Training Mixed-Precision Quantization for Large Language Models
  • [DAC] A Comprehensive Evaluation of Quantization Strategies for Large Language Models
  • [arXiv] No Token Left Behind: Reliable KV Cache Compression via Importance-Aware Mixed Precision Quantization
  • [arXiv] Evaluating Quantized Large Language Models
  • [arXiv] FlattenQuant: Breaking Through the Inference Compute-bound for Large Language Models with Per-tensor Quantization
  • [arXiv] LLM-PQ: Serving LLM on Heterogeneous Clusters with Phase-Aware Partition and Adaptive Quantization
  • [arXiv] IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact
  • [arXiv] On the Compressibility of Quantized Large Language Models
  • [arXiv] EasyQuant: An Efficient Data-free Quantization Algorithm for LLMs
  • [arXiv] QAQ: Quality Adaptive Quantization for LLM KV Cache [code] GitHub Repo stars
  • [arXiv] GEAR: An Efficient KV Cache Compression Recipefor Near-Lossless Generative Inference of LLM
  • [arXiv] What Makes Quantization for Large Language Models Hard? An Empirical Study from the Lens of Perturbation
  • [arXiv] SVD-LLM: Truncation-aware Singular Value Decomposition for Large Language Model Compression [code] GitHub Repo stars
  • [ICLR] AffineQuant: Affine Transformation Quantization for Large Language Models [code] GitHub Repo stars
  • [ICLR Practical ML for Low Resource Settings Workshop] Oh! We Freeze: Improving Quantized Knowledge Distillation via Signal Propagation Analysis for Large Language Models
  • [arXiv] Accurate Block Quantization in LLMs with Outliers
  • [arXiv] QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs [code] GitHub Repo stars
  • [arXiv] Minimize Quantization Output Error with Bias Compensation [code] ![GitHub Repo

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多