全面的模型量化研究资 源
此项目汇集了关于模型量化的各类论文、文档和代码,为研究者提供丰富的参考资源。内容包括二值化和量化方法的调研、基准测试,以及生成模型的压缩和加速技术。项目持续更新,并欢迎对未收录研究成果的贡献。感谢所有已作出贡献的研究者。
This repo collects papers, docs, codes about model quantization for anyone who wants to do research on it. We are continuously improving the project. Welcome to PR the works (papers, repositories) that are missed by the repo. Special thanks to Xingyu Zheng, Yifu Ding, Xudong Ma, Yuxuan Wen, and all researchers who have contributed to this project!
We highlight our newly released awesome open-source project "Awesome Efficient AIGC". Specifically, this project focuses on recent methods for compression and acceleration of generative models, such as large language models and diffusion models. Welcome to Star the Repo or PR any work you like!
https://github.com/htqin/awesome-efficient-aigc
The paper BiBench: Benchmarking and Analyzing Network Binarization (ICML 2023) a rigorously designed benchmark with in-depth analysis for network binarization. For details, please refer to:
BiBench: Benchmarking and Analyzing Network Binarization [Paper] [Project]
Haotong Qin, Mingyuan Zhang, Yifu Ding, Aoyu Li, Zhongang Cai, Ziwei Liu, Fisher Yu, Xianglong Liu.
<details><summary>Bibtex</summary><pre><code>@inproceedings{qin2023bibench, title={BiBench: Benchmarking and Analyzing Network Binarization}, author={Qin, Haotong and Zhang, Mingyuan and Ding, Yifu and Li, Aoyu and Cai, Zhongang and Liu, Ziwei and Yu, Fisher and Liu, Xianglong}, booktitle={International Conference on Machine Learning (ICML)}, year={2023} }</code></pre></details>The paper MQBench: Towards Reproducible and Deployable Model Quantization Benchmark (NeurIPS 2021) is a benchmark and framework for evluating the quantization algorithms under real world hardware deployments. For details, please refer to:
MQBench: Towards Reproducible and Deployable Model Quantization Benchmark [Paper] [Project]
Yuhang Li, Mingzhu Shen, Jian Ma, Yan Ren, Mingxin Zhao, Qi Zhang, Ruihao Gong, Fengwei Yu, Junjie Yan.
<details><summary>Bibtex</summary><pre><code>@article{2021MQBench, title = "MQBench: Towards Reproducible and Deployable Model Quantization Benchmark", author= "Yuhang Li* and Mingzhu Shen* and Jian Ma* and Yan Ren* and Mingxin Zhao* and Qi Zhang* and Ruihao Gong and Fengwei Yu and Junjie Yan", journal = "https://openreview.net/forum?id=TUplOmF8DsM", year = "2021" }</code></pre></details>Our survey paper Binary Neural Networks: A Survey (Pattern Recognition) is a comprehensive survey of recent progress in binary neural networks. For details, please refer to:
Binary Neural Networks: A Survey [Paper] [Blog]
Haotong Qin, Ruihao Gong, Xianglong Liu*, Xiao Bai, Jingkuan Song, and Nicu Sebe.
<details><summary>Bibtex</summary><pre><code>@article{Qin:pr20_bnn_survey, title = "Binary neural networks: A survey", author = "Haotong Qin and Ruihao Gong and Xianglong Liu and Xiao Bai and Jingkuan Song and Nicu Sebe", journal = "Pattern Recognition", volume = "105", pages = "107281", year = "2020" }</code></pre></details>The survey paper A Survey of Quantization Methods for Efficient Neural Network Inference (ArXiv) is a comprehensive survey of recent progress in quantization. For details, please refer to:
A Survey of Quantization Methods for Efficient Neural Network Inference [Paper]
Amir Gholami* , Sehoon Kim* , Zhen Dong* , Zhewei Yao* , Michael W. Mahoney, Kurt Keutzer. (* Equal contribution)
<details><summary>Bibtex</summary><pre><code>@misc{gholami2021survey, title={A Survey of Quantization Methods for Efficient Neural Network Inference}, author={Amir Gholami and Sehoon Kim and Zhen Dong and Zhewei Yao and Michael W. Mahoney and Kurt Keutzer}, year={2021}, eprint={2103.13630}, archivePrefix={arXiv}, primaryClass={cs.CV} }</code></pre></details>Keywords: qnn
: quantized neural networks | bnn
: binarized neural networks | hardware
: hardware deployment | snn
: spiking neural networks | other
hardware
]最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。
像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍 摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生 涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号