awesome-model-quantization

awesome-model-quantization

全面的模型量化研究资源

此项目汇集了关于模型量化的各类论文、文档和代码,为研究者提供丰富的参考资源。内容包括二值化和量化方法的调研、基准测试,以及生成模型的压缩和加速技术。项目持续更新,并欢迎对未收录研究成果的贡献。感谢所有已作出贡献的研究者。

Awesome Model QuantizationBiBenchMQBenchSurvey of QuantizationEfficient_AIGC_RepoGithub开源项目

Awesome Model Quantization Awesome

This repo collects papers, docs, codes about model quantization for anyone who wants to do research on it. We are continuously improving the project. Welcome to PR the works (papers, repositories) that are missed by the repo. Special thanks to Xingyu Zheng, Yifu Ding, Xudong Ma, Yuxuan Wen, and all researchers who have contributed to this project!

Table of Contents

Efficient_AIGC_Repo

We highlight our newly released awesome open-source project "Awesome Efficient AIGC". Specifically, this project focuses on recent methods for compression and acceleration of generative models, such as large language models and diffusion models. Welcome to Star the Repo or PR any work you like!

https://github.com/htqin/awesome-efficient-aigc AwesomeGitHub Repo stars

Benchmark

BiBench

The paper BiBench: Benchmarking and Analyzing Network Binarization (ICML 2023) a rigorously designed benchmark with in-depth analysis for network binarization. For details, please refer to:

BiBench: Benchmarking and Analyzing Network Binarization [Paper] [Project]

Haotong Qin, Mingyuan Zhang, Yifu Ding, Aoyu Li, Zhongang Cai, Ziwei Liu, Fisher Yu, Xianglong Liu.

<details><summary>Bibtex</summary><pre><code>@inproceedings{qin2023bibench, title={BiBench: Benchmarking and Analyzing Network Binarization}, author={Qin, Haotong and Zhang, Mingyuan and Ding, Yifu and Li, Aoyu and Cai, Zhongang and Liu, Ziwei and Yu, Fisher and Liu, Xianglong}, booktitle={International Conference on Machine Learning (ICML)}, year={2023} }</code></pre></details>

survey

MQBench

The paper MQBench: Towards Reproducible and Deployable Model Quantization Benchmark (NeurIPS 2021) is a benchmark and framework for evluating the quantization algorithms under real world hardware deployments. For details, please refer to:

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark [Paper] [Project]

Yuhang Li, Mingzhu Shen, Jian Ma, Yan Ren, Mingxin Zhao, Qi Zhang, Ruihao Gong, Fengwei Yu, Junjie Yan.

<details><summary>Bibtex</summary><pre><code>@article{2021MQBench, title = "MQBench: Towards Reproducible and Deployable Model Quantization Benchmark", author= "Yuhang Li* and Mingzhu Shen* and Jian Ma* and Yan Ren* and Mingxin Zhao* and Qi Zhang* and Ruihao Gong and Fengwei Yu and Junjie Yan", journal = "https://openreview.net/forum?id=TUplOmF8DsM", year = "2021" }</code></pre></details>

survey

Survey_Papers

Survey_of_Binarization

Our survey paper Binary Neural Networks: A Survey (Pattern Recognition) is a comprehensive survey of recent progress in binary neural networks. For details, please refer to:

Binary Neural Networks: A Survey [Paper] [Blog]

Haotong Qin, Ruihao Gong, Xianglong Liu*, Xiao Bai, Jingkuan Song, and Nicu Sebe.

<details><summary>Bibtex</summary><pre><code>@article{Qin:pr20_bnn_survey, title = "Binary neural networks: A survey", author = "Haotong Qin and Ruihao Gong and Xianglong Liu and Xiao Bai and Jingkuan Song and Nicu Sebe", journal = "Pattern Recognition", volume = "105", pages = "107281", year = "2020" }</code></pre></details>

survey

Survey_of_Quantization

The survey paper A Survey of Quantization Methods for Efficient Neural Network Inference (ArXiv) is a comprehensive survey of recent progress in quantization. For details, please refer to:

A Survey of Quantization Methods for Efficient Neural Network Inference [Paper]

Amir Gholami* , Sehoon Kim* , Zhen Dong* , Zhewei Yao* , Michael W. Mahoney, Kurt Keutzer. (* Equal contribution)

<details><summary>Bibtex</summary><pre><code>@misc{gholami2021survey, title={A Survey of Quantization Methods for Efficient Neural Network Inference}, author={Amir Gholami and Sehoon Kim and Zhen Dong and Zhewei Yao and Michael W. Mahoney and Kurt Keutzer}, year={2021}, eprint={2103.13630}, archivePrefix={arXiv}, primaryClass={cs.CV} }</code></pre></details>

Papers

Keywords: qnn: quantized neural networks | bnn: binarized neural networks | hardware: hardware deployment | snn: spiking neural networks | other


2024

  • [arXiv] How Good Are Low-bit Quantized LLaMA3 Models? An Empirical Study [code]GitHub Repo stars [HuggingFace]
  • [arXiv] Accurate LoRA-Finetuning Quantization of LLMs via Information Retention [code]GitHub Repo stars
  • [arXiv] BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [code]GitHub Repo stars
  • [arXiv] BinaryDM: Towards Accurate Binarization of Diffusion Model [code]GitHub Repo stars
  • [arXiv] DB-LLM: Accurate Dual-Binarization for Efficient LLMs
  • [arXiv] BinaryDM: Towards Accurate Binarization of Diffusion Model [code]GitHub Repo stars
  • [arXiv] OHQ: On-chip Hardware-aware Quantization
  • [arXiv] Post-Training Quantization with Low-precision Minifloats and Integers on FPGAs [code][hardware]
  • [arXiv] Extreme Compression of Large Language Models via Additive Quantization
  • [arXiv] Quantized Side Tuning: Fast and Memory-Efficient Tuning of Quantized Large Language Models
  • [arXiv] FP6-LLM: Efficiently Serving Large Language Models Through FP6-Centric Algorithm-System Co-Design
  • [arXiv] KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization
  • [arXiv] EdgeQAT: Entropy and Distribution Guided Quantization-Aware Training for the Acceleration of Lightweight LLMs on the Edge [code] GitHub Repo stars
  • [arXiv] Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs
  • [arXiv] LQER: Low-Rank Quantization Error Reconstruction for LLMs
  • [arXiv] KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [code] GitHub Repo stars
  • [arXiv] QuIP#: Even Better LLM Quantization with Hadamard Incoherence and Lattice Codebooks [code] GitHub Repo stars
  • [arXiv] L4Q: Parameter Efficient Quantization-Aware Training on Large Language Models via LoRA-wise LSQ
  • [arXiv] TP-Aware Dequantization
  • [arXiv] ApiQ: Finetuning of 2-Bit Quantized Large Language Model
  • [arXiv] Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs
  • [arXiv] BitDistiller: Unleashing the Potential of Sub-4-Bit LLMs via Self-Distillation [code] GitHub Repo stars
  • [arXiv] OneBit: Towards Extremely Low-bit Large Language Models
  • [arXiv] WKVQuant: Quantising Weight and Key/Value Cache for Large Language Models Gains More
  • [arXiv] GPTVQ: The Blessing of Dimensionality for LLM Quantization [code] GitHub Repo stars
  • [DAC] APTQ: Attention-aware Post-Training Mixed-Precision Quantization for Large Language Models
  • [DAC] A Comprehensive Evaluation of Quantization Strategies for Large Language Models
  • [arXiv] No Token Left Behind: Reliable KV Cache Compression via Importance-Aware Mixed Precision Quantization
  • [arXiv] Evaluating Quantized Large Language Models
  • [arXiv] FlattenQuant: Breaking Through the Inference Compute-bound for Large Language Models with Per-tensor Quantization
  • [arXiv] LLM-PQ: Serving LLM on Heterogeneous Clusters with Phase-Aware Partition and Adaptive Quantization
  • [arXiv] IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact
  • [arXiv] On the Compressibility of Quantized Large Language Models
  • [arXiv] EasyQuant: An Efficient Data-free Quantization Algorithm for LLMs
  • [arXiv] QAQ: Quality Adaptive Quantization for LLM KV Cache [code] GitHub Repo stars
  • [arXiv] GEAR: An Efficient KV Cache Compression Recipefor Near-Lossless Generative Inference of LLM
  • [arXiv] What Makes Quantization for Large Language Models Hard? An Empirical Study from the Lens of Perturbation
  • [arXiv] SVD-LLM: Truncation-aware Singular Value Decomposition for Large Language Model Compression [code] GitHub Repo stars
  • [ICLR] AffineQuant: Affine Transformation Quantization for Large Language Models [code] GitHub Repo stars
  • [ICLR Practical ML for Low Resource Settings Workshop] Oh! We Freeze: Improving Quantized Knowledge Distillation via Signal Propagation Analysis for Large Language Models
  • [arXiv] Accurate Block Quantization in LLMs with Outliers
  • [arXiv] QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs [code] GitHub Repo stars
  • [arXiv] Minimize Quantization Output Error with Bias Compensation [code] ![GitHub Repo

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多