Reference application developed in the Functional event-driven architecture: Powered by Scala 3 book.
The web application allows users to subscribe/unsubscribe to/from symbol alerts such as EURUSD
, which are emitted in real-time via Web Sockets.
It is written in Elm and can be built as follows.
$ nix build .#elm-webapp $ open result/index.html # or specify browser
There's also a development shell handy for local development.
$ nix develop .#elm $ cd web-app $ elm make src/Main.elm --output=Main.js $ open index.html # or specify browser
If Nix is not your jam, you can install Elm by following the official instructions and then compile as usual.
$ cd web-app $ elm make src/Main.elm --output=Main.js $ xdg-open index.html # or specify browser
There is also a replica of the Elm application written in Scala using the Tyrian framework that can be built as follows.
$ sbt 'webapp/fullLinkJS'
You can then run it via Nix as shown below (it requires flakes).
$ nix run .#tyrian-webapp Using cache dir: /home/gvolpe/workspace/trading/modules/ws-client/nix-parcel-cache Server running at http://localhost:1234 ✨ Built in 7ms
NOTICE: The nix run
command will create a directory for the Parcel cache, which needs write permissions.
We use fullLinkJS
to create a fully optimized JS file. However, we can use fastLinkJS
for faster iterations.
For such cases, it may be more convenient to use yarn
directly.
$ nix develop .#tyrian $ cd modules/ws-client $ yarn install $ yarn build $ yarn start yarn run v1.22.17 parcel index.html --no-cache --dist-dir dist --log-level info Server running at http://localhost:1234 ✨ Built in 1.82s
However, this is not fully reproducible and can't be guaranteed this will work in the future.
Without Nix, you need to install yarn
and parcel
, and use yarn
as shown above.
Here's an overview of all the components of the system.
The back-end application is structured as a mono-repo, and it requires both Apache Pulsar and Redis up and running. To make things easier, you can use the provided docker-compose.yml
file.
The docker-compose
file depends on declared services to be published on the local docker server. All docker builds are handled within the build.sbt
using sbt-native-packager
.
To build all of the service images, we have a few options.
The first one via the given Dockerfile.
$ docker build -t jdk17-curl modules/
The second one via Nix, from where we can build a slim image also based on openjdk:17-slim-buster
.
$ nix build .#slimDocker -o result-jre $ docker load -i result-jre
The third one also via Nix, though building a layered image based on the same JDK we use for development.
$ nix build .#docker -o result-jre $ docker load -i result-jre
The main difference between these three options is the resulting image size.
$ docker images | rg jdk17 jdk17-curl latest 0ed94a723ce3 10 months ago 422MB jdk17-curl-nix latest c28f54e42c21 52 years ago 557MB jdk17-curl-slim latest dbe24e7a7163 52 years ago 465MB
Any image is valid. Feel free to pick your preferred method.
NOTE: As of September 2022, the Docker image resulting from nix build .#docker
is no longer compatible with sbt-native-packager
, so either go for nix build
(defaults to the slim image) or build it directly via Docker with the given Dockerfile.
Once the base jdk17-curl
image has been built, we can proceed with building all our services' images.
$ sbt docker:publishLocal
$ docker-compose up -d pulsar redis
To run the Kafka Demo (see more below in X Demo), kafka.yml
should be used instead.
$ docker-compose -f kafka.yml up
If we don't specify any arguments, then all the containers will be started, including all our services (except feed
), Prometheus, Grafana, and Pulsar Manager.
$ docker-compose up Creating network "trading_app" with the default driver Creating trading_pulsar_1 ... done Creating trading_redis_1 ... done Creating trading_ws-server_1 ... done Creating trading_pulsar-manager_1 ... done Creating trading_alerts_1 ... done Creating trading_processor_1 ... done Creating trading_snapshots_1 ... done Creating trading_forecasts_1 ... done Creating trading_tracing_1 ... done Creating trading_prometheus_1 ... done Creating trading_grafana_1 ... done
It is recommended to run the feed
service directly from sbt
whenever necessary, which publishes random data to the topics where other services are consuming messages from.
The back-end application consists of 9 modules, from which 5 are deployable applications, and 3 are just shared modules. There's also a demo module and a web application.
modules
├── alerts
├── core
├── domain
├── feed
├── forecasts
├── it
├── lib
├── processor
├── snapshots
├── tracing
├── ws-client
├── ws-server
├── x-demo
└── x-qa
Capability traits such as Logger
, Time
, GenUUID
, and potential library abstractions such as Consumer
and Producer
, which abstract over different implementations such as Kafka and Pulsar.
Commands, events, state, and all business-related data modeling.
Core functionality that needs to be shared across different modules such as snapshots, AppTopic
, and TradeEngine
.
Generates random TradeCommand
s and ForecastCommand
s followed by publishing them to the corresponding topics. In the absence of real input data, this random feed puts the entire system to work.
Registers new authors and forecasts, while calculating the author's reputation.
The brain of the trading application. It consumes TradeCommand
s, processes them to generate a TradeState
and emitting TradeEvent
s via the trading-events
topic.
It consumes TradeEvent
s and recreates the TradeState
that is persisted as a snapshot, running as a single instance in fail-over mode.
The alerts engine consumes TradeEvent
s and emits Alert
messages such as Buy
, StrongBuy
or Sell
via the trading-alerts
topic, according to the configured parameters.
It consumes Alert
messages and sends them over Web Sockets whenever there's an active subscription for the alert.
A decentralized application that hooks up on multiple topics and creates traces via the Open Tracing protocol, using the Natchez library and Honeycomb.
All unit tests can be executed via sbt test
. There's also a small suite of integration tests that can be executed via sbt it/test
(it requires Redis to be up).
It contains all the standalone examples shown in the book. It also showcases both KafkaDemo
and MemDemo
programs that use the same Consumer
and Producer
abstractions defined in the lib
module.
To run the Pulsar CDC Demo, you need Postgres and Pulsar (make sure no other instances are running). Before running them, we need to download the connector NAR file.
$ mkdir -p pulsarconf/connectors && cd pulsarconf/connectors $ wget https://archive.apache.org/dist/pulsar/pulsar-2.10.1/connectors/pulsar-io-debezium-postgres-2.10.1.nar $ docker-compose -f pulsar-cdc.yml up
Once both instances are up and healthy, we can run the Pulsar Debezium connector.
$ docker-compose exec -T pulsar bin/pulsar-admin source localrun --source-config-file /pulsar/conf/debezium-pg.yaml
You should see this in the logs.
Snapshot step 3 - Locking captured tables [public.authors]
It contains the smokey
project that models the smoke test for trading.
JVM stats are provided for every service via Prometheus and Grafana.
Two Pulsar topics can be compacted to speed-up reads on startup, corresponding to Alert
and TradeEvent.Switch
.
To compact a topic on demand (useful for manual testing), run these commands.
$ docker-compose exec pulsar bin/pulsar-admin topics compact persistent://public/default/trading-alerts Topic compaction requested for persistent://public/default/trading-alerts. $ docker-compose exec pulsar bin/pulsar-admin topics compact persistent://public/default/trading-switch-events Topic compaction requested for persistent://public/default/trading-switch-events
In production, one would configure topic compaction to be triggered automatically at the namespace level when certain threshold is reached. For example, to trigger compaction when the backlog reaches 10MB:
$ docker-compose exec pulsar bin/pulsar-admin namespaces set-compaction-threshold --threshold 10M public/default
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档 。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出 的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号