trading

trading

Scala 3驱动的事件架构参考实现

项目采用Scala 3实现事件驱动架构,包括交易处理、预测、快照和警报等微服务。使用Apache Pulsar进行消息通信,提供Web界面实现实时交易警报订阅。集成了监控、分布式追踪和自动化测试,可作为构建现代事件驱动系统的参考。

trading微服务架构事件驱动Scala功能性编程Github开源项目

trading

CI Elm CI Scala CI Tyrian CI Registry CI Smokey

Reference application developed in the Functional event-driven architecture: Powered by Scala 3 book.

Table of contents

Web App

The web application allows users to subscribe/unsubscribe to/from symbol alerts such as EURUSD, which are emitted in real-time via Web Sockets.

client

It is written in Elm and can be built as follows.

$ nix build .#elm-webapp $ open result/index.html # or specify browser

There's also a development shell handy for local development.

$ nix develop .#elm $ cd web-app $ elm make src/Main.elm --output=Main.js $ open index.html # or specify browser

If Nix is not your jam, you can install Elm by following the official instructions and then compile as usual.

$ cd web-app $ elm make src/Main.elm --output=Main.js $ xdg-open index.html # or specify browser

ScalaJS

There is also a replica of the Elm application written in Scala using the Tyrian framework that can be built as follows.

$ sbt 'webapp/fullLinkJS'

You can then run it via Nix as shown below (it requires flakes).

$ nix run .#tyrian-webapp Using cache dir: /home/gvolpe/workspace/trading/modules/ws-client/nix-parcel-cache Server running at http://localhost:1234 ✨ Built in 7ms

NOTICE: The nix run command will create a directory for the Parcel cache, which needs write permissions.

We use fullLinkJS to create a fully optimized JS file. However, we can use fastLinkJS for faster iterations.

For such cases, it may be more convenient to use yarn directly.

$ nix develop .#tyrian $ cd modules/ws-client $ yarn install $ yarn build $ yarn start yarn run v1.22.17 parcel index.html --no-cache --dist-dir dist --log-level info Server running at http://localhost:1234 ✨ Built in 1.82s

However, this is not fully reproducible and can't be guaranteed this will work in the future.

Without Nix, you need to install yarn and parcel, and use yarn as shown above.

Overview

Here's an overview of all the components of the system.

overview

  • Dotted lines: Pulsar messages such as commands and events.
  • Bold lines: read and writes from / to external components (Redis, Postgres, etc).

Requirements

The back-end application is structured as a mono-repo, and it requires both Apache Pulsar and Redis up and running. To make things easier, you can use the provided docker-compose.yml file.

Build JDK image

The docker-compose file depends on declared services to be published on the local docker server. All docker builds are handled within the build.sbt using sbt-native-packager.

To build all of the service images, we have a few options.

The first one via the given Dockerfile.

$ docker build -t jdk17-curl modules/

The second one via Nix, from where we can build a slim image also based on openjdk:17-slim-buster.

$ nix build .#slimDocker -o result-jre $ docker load -i result-jre

The third one also via Nix, though building a layered image based on the same JDK we use for development.

$ nix build .#docker -o result-jre $ docker load -i result-jre

The main difference between these three options is the resulting image size.

$ docker images | rg jdk17 jdk17-curl latest 0ed94a723ce3 10 months ago 422MB jdk17-curl-nix latest c28f54e42c21 52 years ago 557MB jdk17-curl-slim latest dbe24e7a7163 52 years ago 465MB

Any image is valid. Feel free to pick your preferred method.

NOTE: As of September 2022, the Docker image resulting from nix build .#docker is no longer compatible with sbt-native-packager, so either go for nix build (defaults to the slim image) or build it directly via Docker with the given Dockerfile.

Build service images

Once the base jdk17-curl image has been built, we can proceed with building all our services' images.

$ sbt docker:publishLocal

Run dependencies: Redis, Kafka, etc

$ docker-compose up -d pulsar redis

pulsar

To run the Kafka Demo (see more below in X Demo), kafka.yml should be used instead.

$ docker-compose -f kafka.yml up

Running application

If we don't specify any arguments, then all the containers will be started, including all our services (except feed), Prometheus, Grafana, and Pulsar Manager.

$ docker-compose up Creating network "trading_app" with the default driver Creating trading_pulsar_1 ... done Creating trading_redis_1 ... done Creating trading_ws-server_1 ... done Creating trading_pulsar-manager_1 ... done Creating trading_alerts_1 ... done Creating trading_processor_1 ... done Creating trading_snapshots_1 ... done Creating trading_forecasts_1 ... done Creating trading_tracing_1 ... done Creating trading_prometheus_1 ... done Creating trading_grafana_1 ... done

It is recommended to run the feed service directly from sbt whenever necessary, which publishes random data to the topics where other services are consuming messages from.

Services

The back-end application consists of 9 modules, from which 5 are deployable applications, and 3 are just shared modules. There's also a demo module and a web application.

modules
├── alerts
├── core
├── domain
├── feed
├── forecasts
├── it
├── lib
├── processor
├── snapshots
├── tracing
├── ws-client
├── ws-server
├── x-demo
└── x-qa

backend

Lib

Capability traits such as Logger, Time, GenUUID, and potential library abstractions such as Consumer and Producer, which abstract over different implementations such as Kafka and Pulsar.

Domain

Commands, events, state, and all business-related data modeling.

Core

Core functionality that needs to be shared across different modules such as snapshots, AppTopic, and TradeEngine.

Feed

Generates random TradeCommands and ForecastCommands followed by publishing them to the corresponding topics. In the absence of real input data, this random feed puts the entire system to work.

Forecasts

Registers new authors and forecasts, while calculating the author's reputation.

Processor

The brain of the trading application. It consumes TradeCommands, processes them to generate a TradeState and emitting TradeEvents via the trading-events topic.

Snapshots

It consumes TradeEvents and recreates the TradeState that is persisted as a snapshot, running as a single instance in fail-over mode.

Alerts

The alerts engine consumes TradeEvents and emits Alert messages such as Buy, StrongBuy or Sell via the trading-alerts topic, according to the configured parameters.

WS Server

It consumes Alert messages and sends them over Web Sockets whenever there's an active subscription for the alert.

Tracing

A decentralized application that hooks up on multiple topics and creates traces via the Open Tracing protocol, using the Natchez library and Honeycomb.

tracing

Tests

All unit tests can be executed via sbt test. There's also a small suite of integration tests that can be executed via sbt it/test (it requires Redis to be up).

X Demo

It contains all the standalone examples shown in the book. It also showcases both KafkaDemo and MemDemo programs that use the same Consumer and Producer abstractions defined in the lib module.

Pulsar CDC

To run the Pulsar CDC Demo, you need Postgres and Pulsar (make sure no other instances are running). Before running them, we need to download the connector NAR file.

$ mkdir -p pulsarconf/connectors && cd pulsarconf/connectors $ wget https://archive.apache.org/dist/pulsar/pulsar-2.10.1/connectors/pulsar-io-debezium-postgres-2.10.1.nar $ docker-compose -f pulsar-cdc.yml up

Once both instances are up and healthy, we can run the Pulsar Debezium connector.

$ docker-compose exec -T pulsar bin/pulsar-admin source localrun --source-config-file /pulsar/conf/debezium-pg.yaml

You should see this in the logs.

Snapshot step 3 - Locking captured tables [public.authors]

X QA

It contains the smokey project that models the smoke test for trading.

Monitoring

JVM stats are provided for every service via Prometheus and Grafana.

grafana

Topic compaction

Two Pulsar topics can be compacted to speed-up reads on startup, corresponding to Alert and TradeEvent.Switch.

To compact a topic on demand (useful for manual testing), run these commands.

$ docker-compose exec pulsar bin/pulsar-admin topics compact persistent://public/default/trading-alerts Topic compaction requested for persistent://public/default/trading-alerts. $ docker-compose exec pulsar bin/pulsar-admin topics compact persistent://public/default/trading-switch-events Topic compaction requested for persistent://public/default/trading-switch-events

In production, one would configure topic compaction to be triggered automatically at the namespace level when certain threshold is reached. For example, to trigger compaction when the backlog reaches 10MB:

$ docker-compose exec pulsar bin/pulsar-admin namespaces set-compaction-threshold --threshold 10M public/default

编辑推荐精选

商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
下拉加载更多