Reference application developed in the Functional event-driven architecture: Powered by Scala 3 book.
The web application allows users to subscribe/unsubscribe to/from symbol alerts such as EURUSD
, which are emitted in real-time via Web Sockets.
It is written in Elm and can be built as follows.
$ nix build .#elm-webapp $ open result/index.html # or specify browser
There's also a development shell handy for local development.
$ nix develop .#elm $ cd web-app $ elm make src/Main.elm --output=Main.js $ open index.html # or specify browser
If Nix is not your jam, you can install Elm by following the official instructions and then compile as usual.
$ cd web-app $ elm make src/Main.elm --output=Main.js $ xdg-open index.html # or specify browser
There is also a replica of the Elm application written in Scala using the Tyrian framework that can be built as follows.
$ sbt 'webapp/fullLinkJS'
You can then run it via Nix as shown below (it requires flakes).
$ nix run .#tyrian-webapp Using cache dir: /home/gvolpe/workspace/trading/modules/ws-client/nix-parcel-cache Server running at http://localhost:1234 ✨ Built in 7ms
NOTICE: The nix run
command will create a directory for the Parcel cache, which needs write permissions.
We use fullLinkJS
to create a fully optimized JS file. However, we can use fastLinkJS
for faster iterations.
For such cases, it may be more convenient to use yarn
directly.
$ nix develop .#tyrian $ cd modules/ws-client $ yarn install $ yarn build $ yarn start yarn run v1.22.17 parcel index.html --no-cache --dist-dir dist --log-level info Server running at http://localhost:1234 ✨ Built in 1.82s
However, this is not fully reproducible and can't be guaranteed this will work in the future.
Without Nix, you need to install yarn
and parcel
, and use yarn
as shown above.
Here's an overview of all the components of the system.
The back-end application is structured as a mono-repo, and it requires both Apache Pulsar and Redis up and running. To make things easier, you can use the provided docker-compose.yml
file.
The docker-compose
file depends on declared services to be published on the local docker server. All docker builds are handled within the build.sbt
using sbt-native-packager
.
To build all of the service images, we have a few options.
The first one via the given Dockerfile.
$ docker build -t jdk17-curl modules/
The second one via Nix, from where we can build a slim image also based on openjdk:17-slim-buster
.
$ nix build .#slimDocker -o result-jre $ docker load -i result-jre
The third one also via Nix, though building a layered image based on the same JDK we use for development.
$ nix build .#docker -o result-jre $ docker load -i result-jre
The main difference between these three options is the resulting image size.
$ docker images | rg jdk17 jdk17-curl latest 0ed94a723ce3 10 months ago 422MB jdk17-curl-nix latest c28f54e42c21 52 years ago 557MB jdk17-curl-slim latest dbe24e7a7163 52 years ago 465MB
Any image is valid. Feel free to pick your preferred method.
NOTE: As of September 2022, the Docker image resulting from nix build .#docker
is no longer compatible with sbt-native-packager
, so either go for nix build
(defaults to the slim image) or build it directly via Docker with the given Dockerfile.
Once the base jdk17-curl
image has been built, we can proceed with building all our services' images.
$ sbt docker:publishLocal
$ docker-compose up -d pulsar redis
To run the Kafka Demo (see more below in X Demo), kafka.yml
should be used instead.
$ docker-compose -f kafka.yml up
If we don't specify any arguments, then all the containers will be started, including all our services (except feed
), Prometheus, Grafana, and Pulsar Manager.
$ docker-compose up Creating network "trading_app" with the default driver Creating trading_pulsar_1 ... done Creating trading_redis_1 ... done Creating trading_ws-server_1 ... done Creating trading_pulsar-manager_1 ... done Creating trading_alerts_1 ... done Creating trading_processor_1 ... done Creating trading_snapshots_1 ... done Creating trading_forecasts_1 ... done Creating trading_tracing_1 ... done Creating trading_prometheus_1 ... done Creating trading_grafana_1 ... done
It is recommended to run the feed
service directly from sbt
whenever necessary, which publishes random data to the topics where other services are consuming messages from.
The back-end application consists of 9 modules, from which 5 are deployable applications, and 3 are just shared modules. There's also a demo module and a web application.
modules
├── alerts
├── core
├── domain
├── feed
├── forecasts
├── it
├── lib
├── processor
├── snapshots
├── tracing
├── ws-client
├── ws-server
├── x-demo
└── x-qa
Capability traits such as Logger
, Time
, GenUUID
, and potential library abstractions such as Consumer
and Producer
, which abstract over different implementations such as Kafka and Pulsar.
Commands, events, state, and all business-related data modeling.
Core functionality that needs to be shared across different modules such as snapshots, AppTopic
, and TradeEngine
.
Generates random TradeCommand
s and ForecastCommand
s followed by publishing them to the corresponding topics. In the absence of real input data, this random feed puts the entire system to work.
Registers new authors and forecasts, while calculating the author's reputation.
The brain of the trading application. It consumes TradeCommand
s, processes them to generate a TradeState
and emitting TradeEvent
s via the trading-events
topic.
It consumes TradeEvent
s and recreates the TradeState
that is persisted as a snapshot, running as a single instance in fail-over mode.
The alerts engine consumes TradeEvent
s and emits Alert
messages such as Buy
, StrongBuy
or Sell
via the trading-alerts
topic, according to the configured parameters.
It consumes Alert
messages and sends them over Web Sockets whenever there's an active subscription for the alert.
A decentralized application that hooks up on multiple topics and creates traces via the Open Tracing protocol, using the Natchez library and Honeycomb.
All unit tests can be executed via sbt test
. There's also a small suite of integration tests that can be executed via sbt it/test
(it requires Redis to be up).
It contains all the standalone examples shown in the book. It also showcases both KafkaDemo
and MemDemo
programs that use the same Consumer
and Producer
abstractions defined in the lib
module.
To run the Pulsar CDC Demo, you need Postgres and Pulsar (make sure no other instances are running). Before running them, we need to download the connector NAR file.
$ mkdir -p pulsarconf/connectors && cd pulsarconf/connectors $ wget https://archive.apache.org/dist/pulsar/pulsar-2.10.1/connectors/pulsar-io-debezium-postgres-2.10.1.nar $ docker-compose -f pulsar-cdc.yml up
Once both instances are up and healthy, we can run the Pulsar Debezium connector.
$ docker-compose exec -T pulsar bin/pulsar-admin source localrun --source-config-file /pulsar/conf/debezium-pg.yaml
You should see this in the logs.
Snapshot step 3 - Locking captured tables [public.authors]
It contains the smokey
project that models the smoke test for trading.
JVM stats are provided for every service via Prometheus and Grafana.
Two Pulsar topics can be compacted to speed-up reads on startup, corresponding to Alert
and TradeEvent.Switch
.
To compact a topic on demand (useful for manual testing), run these commands.
$ docker-compose exec pulsar bin/pulsar-admin topics compact persistent://public/default/trading-alerts Topic compaction requested for persistent://public/default/trading-alerts. $ docker-compose exec pulsar bin/pulsar-admin topics compact persistent://public/default/trading-switch-events Topic compaction requested for persistent://public/default/trading-switch-events
In production, one would configure topic compaction to be triggered automatically at the namespace level when certain threshold is reached. For example, to trigger compaction when the backlog reaches 10MB:
$ docker-compose exec pulsar bin/pulsar-admin namespaces set-compaction-threshold --threshold 10M public/default
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
AI辅助编程,代码 自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领 域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。