flax

flax

灵活强大的JAX神经网络库和生态系统

Flax是一个基于JAX的高性能神经网络库,以灵活性为核心设计理念。它提供神经网络API、实用工具、教育示例和优化的大规模端到端示例。Flax支持MLP、CNN和自编码器等多种网络结构,并与Hugging Face集成,涵盖自然语言处理、计算机视觉和语音识别等领域。作为Google Research与开源社区合作开发的项目,Flax致力于促进JAX神经网络研究生态系统的发展。

FlaxJAX神经网络库机器学习深度学习Github开源项目
<div align="center"> <img src="https://yellow-cdn.veclightyear.com/ab5030c0/b2c54c6d-59a3-419c-b562-c0e68a9f0ad4.png" alt="logo"></img> </div>

Flax:为JAX设计的灵活性神经网络库和生态系统

构建 覆盖率

概述 | 快速安装 | Flax是什么样子的? | 文档

📣 新消息:查看NNXAPI!

这个README只是一个简短的介绍。要了解关于Flax的所有信息,请参阅我们的完整文档

Flax最初由Google Research的Brain团队的工程师和研究人员发起(与JAX团队密切合作),现在与开源社区共同开发。

Flax正被Alphabet各研究部门的数百名人员在日常工作中使用,同时也被越来越多的开源项目社区采用。

Flax团队的使命是服务于不断增长的JAX神经网络研究生态系统——不仅在Alphabet内部,也包括更广泛的社区,并探索JAX表现出色的应用场景。我们几乎所有的协调和计划都在GitHub上进行,也在那里讨论即将到来的设计变更。我们欢迎对任何讨论、问题和拉取请求线程提供反馈。我们正在将一些剩余的内部设计文档和对话线程转移到GitHub的讨论、问题和拉取请求中。我们希望能越来越多地满足更广泛生态系统的需求和澄清要求。请告诉我们我们如何能帮到您!

请在我们的讨论论坛中报告任何功能请求、问题、疑问或担忧,或者只是让我们知道您正在进行什么工作!

我们预计会改进Flax,但不会对核心API进行重大的破坏性更改。我们尽可能使用Changelog条目和弃用警告。

如果您想直接联系我们,我们的邮箱是flax-dev@google.com

概述

Flax是一个为JAX设计的高性能神经网络库和生态系统,专为灵活性而设计: 通过分叉示例并修改训练循环来尝试新的训练形式,而不是通过向框架添加功能。

Flax正在与JAX团队密切合作开发,并提供开始研究所需的一切,包括:

  • 神经网络APIflax.linen):Dense、Conv、{Batch|Layer|Group} Norm、Attention、Pooling、{LSTM|GRU} Cell、Dropout

  • 实用工具和模式:复制训练、序列化和检查点、指标、设备预取

  • 开箱即用的教育示例:MNIST、LSTM seq2seq、图神经网络、序列标记

  • 快速、调优的大规模端到端示例:CIFAR10、ImageNet上的ResNet、Transformer LM1b

快速安装

您需要Python 3.6或更高版本,以及一个可用的JAX安装(无论是否支持GPU - 参考说明)。 对于仅CPU版本的JAX:

pip install --upgrade pip # 支持manylinux2010 wheels。
pip install --upgrade jax jaxlib # 仅CPU

然后,从PyPi安装Flax:

pip install flax

要升级到最新版本的Flax,可以使用:

pip install --upgrade git+https://github.com/google/flax.git

要安装一些额外的依赖项(如matplotlib),这些是某些依赖项需要但未包含的,可以使用:

pip install "flax[all]"

Flax是什么样子的?

我们提供了三个使用Flax API的示例:一个简单的多层感知器、一个CNN和一个自动编码器。 要了解更多关于Module抽象的信息,请查看我们的文档,以及我们的Module抽象广泛介绍。如需更多具体的最佳实践演示,请参考我们的指南开发者笔记

from typing import Sequence import numpy as np import jax import jax.numpy as jnp import flax.linen as nn class MLP(nn.Module): features: Sequence[int] @nn.compact def __call__(self, x): for feat in self.features[:-1]: x = nn.relu(nn.Dense(feat)(x)) x = nn.Dense(self.features[-1])(x) return x model = MLP([12, 8, 4]) batch = jnp.ones((32, 10)) variables = model.init(jax.random.key(0), batch) output = model.apply(variables, batch)
class CNN(nn.Module): @nn.compact def __call__(self, x): x = nn.Conv(features=32, kernel_size=(3, 3))(x) x = nn.relu(x) x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2)) x = nn.Conv(features=64, kernel_size=(3, 3))(x) x = nn.relu(x) x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2)) x = x.reshape((x.shape[0], -1)) # 展平 x = nn.Dense(features=256)(x) x = nn.relu(x) x = nn.Dense(features=10)(x) x = nn.log_softmax(x) return x model = CNN() batch = jnp.ones((32, 64, 64, 10)) # (N, H, W, C) 格式 variables = model.init(jax.random.key(0), batch) output = model.apply(variables, batch)
class AutoEncoder(nn.Module): encoder_widths: Sequence[int] decoder_widths: Sequence[int] input_shape: Sequence[int] def setup(self): input_dim = np.prod(self.input_shape) self.encoder = MLP(self.encoder_widths) self.decoder = MLP(self.decoder_widths + (input_dim,)) def __call__(self, x): return self.decode(self.encode(x)) def encode(self, x): assert x.shape[1:] == self.input_shape return self.encoder(jnp.reshape(x, (x.shape[0], -1))) def decode(self, z): z = self.decoder(z) x = nn.sigmoid(z) x = jnp.reshape(x, (x.shape[0],) + self.input_shape) return x model = AutoEncoder(encoder_widths=[20, 10, 5], decoder_widths=[5, 10, 20], input_shape=(12,)) batch = jnp.ones((16, 12)) variables = model.init(jax.random.key(0), batch) encoded = model.apply(variables, batch, method=model.encode) decoded = model.apply(variables, encoded, method=model.decode)

🤗 Hugging Face

🤗 Transformers 仓库中,正在积极维护用于训练和评估各种Flax模型的详细示例,涵盖了自然语言处理、计算机视觉和语音识别领域。

截至2021年10月,Flax支持19种最常用的Transformer架构,并且已有超过5000个预训练的Flax检查点上传到🤗 Hub

引用Flax

要引用此仓库:

@software{flax2020github,
  author = {Jonathan Heek and Anselm Levskaya and Avital Oliver and Marvin Ritter and Bertrand Rondepierre and Andreas Steiner and Marc van {Z}ee},
  title = {{F}lax: A neural network library and ecosystem for {JAX}},
  url = {http://github.com/google/flax},
  version = {0.8.6},
  year = {2023},
}

在上述bibtex条目中,姓名按字母顺序排列,版本号来自flax/version.py,年份对应项目的开源发布年份。

注意

Flax 是一个由谷歌研究院专门团队维护的开源项目,但并非谷歌的官方产品。

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多