qgate-sln-mlrun

qgate-sln-mlrun

MLRun解决方案的全面质量检测工具

qgate-sln-mlrun是一个针对MLRun和Iguazio解决方案的质量检测工具。它提供功能、集成、性能和安全性等方面的独立测试,支持项目管理、特征工程、数据处理、模型开发等多个场景。该工具兼容Redis、MySQL、Kafka等多种数据源和目标,可在企业环境全面部署前进行深度质量检查,为MLRun用户提供客观、全面的质量评估。

MLRun质量测试特征工程数据摄取模型部署Github开源项目

License PyPI version fury.io coverage GitHub commit activity GitHub release

QGate-Sln-MLRun

The Quality Gate for solution MLRun (and Iguazio). The main aims of the project are:

  • independent quality test (function, integration, performance, vulnerability, acceptance, ... tests)
  • deeper quality checks before full rollout/use in company environments
  • identification of possible compatibility issues (if any)
  • external and independent test coverage
  • community support
  • etc.

The tests use these key components, MLRun solution see GIT mlrun, sample meta-data model see GIT qgate-model and this project.

Test scenarios

The quality gate covers these test scenarios (✅ done, ✔ in-progress, ❌ planned):

  • 01 - Project
    • ✅ TS101: Create project(s)
    • ✅ TS102: Delete project(s)
  • 02 - Feature set
    • ✅ TS201: Create feature set(s)
    • ✅ TS202: Create feature set(s) & Ingest from DataFrame source (one step)
    • ✅ TS203: Create feature set(s) & Ingest from CSV source (one step)
    • ✅ TS204: Create feature set(s) & Ingest from Parquet source (one step)
    • ✅ TS205: Create feature set(s) & Ingest from SQL source (one step)
    • ✔ TS206: Create feature set(s) & Ingest from Kafka source (one step)
    • ✔ TS207: Create feature set(s) & Ingest from HTTP source (one step)
  • 03 - Ingest data
    • ✅ TS301: Ingest data (Preview mode)
    • ✅ TS302: Ingest data to feature set(s) from DataFrame source
    • ✅ TS303: Ingest data to feature set(s) from CSV source
    • ✅ TS304: Ingest data to feature set(s) from Parquet source
    • ✅ TS305: Ingest data to feature set(s) from SQL source
    • ✔ TS306: Ingest data to feature set(s) from Kafka source
    • ✔ TS307: Ingest data to feature set(s) from HTTP source
  • 04 - Ingest data & pipeline
    • ✅ TS401: Ingest data & pipeline (Preview mode)
    • ✅ TS402: Ingest data & pipeline to feature set(s) from DataFrame source
    • ✅ TS403: Ingest data & pipeline to feature set(s) from CSV source
    • ✅ TS404: Ingest data & pipeline to feature set(s) from Parquet source
    • ✅ TS405: Ingest data & pipeline to feature set(s) from SQL source
    • ✔ TS406: Ingest data & pipeline to feature set(s) from Kafka source
    • ❌ TS407: Ingest data & pipeline to feature set(s) from HTTP source
  • 05 - Feature vector
    • ✅ TS501: Create feature vector(s)
  • 06 - Get data from vector
    • ✅ TS601: Get data from off-line feature vector(s)
    • ✅ TS602: Get data from on-line feature vector(s)
  • 07 - Pipeline
    • ✅ TS701: Simple pipeline(s)
    • ✅ TS702: Complex pipeline(s)
    • ✅ TS703: Complex pipeline(s), mass operation
  • 08 - Build model
    • ✅ TS801: Build CART model
    • ❌ TS802: Build XGBoost model
    • ❌ TS803: Build DNN model
  • 09 - Serve model
    • ✅ TS901: Serving score from CART
    • ❌ TS902: Serving score from XGBoost
    • ❌ TS903: Serving score from DNN
  • 10 - Model monitoring/drifting
    • ❌ TS1001: Real-time monitoring
    • ❌ TS1002: Batch monitoring

NOTE: Each test scenario contains addition specific test cases (e.g. with different targets for feature sets, etc.).

Test inputs/outputs

The quality gate tests these inputs/outputs (✅ done, ✔ in-progress, ❌ planned):

  • Outputs (targets)
    • ✅ RedisTarget, ✅ SQLTarget/MySQL, ✔ SQLTarget/Postgres, ✅ KafkaTarget
    • ✅ ParquetTarget, ✅ CSVTarget
    • ✅ File system, ❌ S3, ❌ BlobStorage
  • Inputs (sources)
    • ✅ Pandas/DataFrame, ✅ SQLSource/MySQL, ❌ SQLSource/Postgres, ❌ KafkaSource
    • ✅ ParquetSource, ✅ CSVSource
    • ✅ File system, ❌ S3, ❌ BlobStorage

The current supported sources/targets in MLRun.

Sample of outputs

Sample of outputs

The PART reports in original form, see:

Usage

You can easy use this solution in four steps:

  1. Download content of these two GIT repositories to your local environment
  2. Update file qgate-sln-mlrun.env from qgate-model
    • Update variables for MLRun/Iguazio, see MLRUN_DBPATH, V3IO_USERNAME, V3IO_ACCESS_KEY, V3IO_API
      • setting of V3IO_* is needed only in case of Iguazio installation (not for pure free MLRun)
    • Update variables for QGate, see QGATE_* (basic description directly in *.env)
  3. Run from qgate-sln-mlrun
    • python main.py
  4. See outputs (location is based on QGATE_OUTPUT in configuration)
    • './output/qgt-mlrun-<date> <sequence>.html'
    • './output/qgt-mlrun-<date> <sequence>.txt'

Precondition: You have available MLRun or Iguazio solution (MLRun is part of that), see official installation steps, or directly installation for Desktop Docker.

Tested with

The project was tested with these MLRun versions (see change log):

  • MLRun (in Desktop Docker)
    • MLRun 1.7.0 (plan 08/2024)
    • MLRun 1.6.4, 1.6.3, 1.6.2, 1.6.1, 1.6.0
    • MLRun 1.5.2, 1.5.1, 1.5.0
    • MLRun 1.4.1
    • MLRun 1.3.0
  • Iguazio (k8s, on-prem, VM on VMware)
    • Iguazio 3.5.3 (with MLRun 1.4.1)
    • Iguazio 3.5.1 (with MLRun 1.3.0)

NOTE: Current state, only the last MLRun/Iguazio versions are tested (the backward compatibility is based on MLRun/Iguazio, see).

Others

  • To-Do, the list of expected/future improvements, see
  • Applied limits, the list of applied limits/issues, see
  • How can you test the solution?, you have to focus on Linux env. or Windows with WSL2 (see step by step tutorial)
  • MLRun/Iguazio, the key changes in a nutshell (customer view), see

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多