qgate-sln-mlrun

qgate-sln-mlrun

MLRun解决方案的全面质量检测工具

qgate-sln-mlrun是一个针对MLRun和Iguazio解决方案的质量检测工具。它提供功能、集成、性能和安全性等方面的独立测试,支持项目管理、特征工程、数据处理、模型开发等多个场景。该工具兼容Redis、MySQL、Kafka等多种数据源和目标,可在企业环境全面部署前进行深度质量检查,为MLRun用户提供客观、全面的质量评估。

MLRun质量测试特征工程数据摄取模型部署Github开源项目

License PyPI version fury.io coverage GitHub commit activity GitHub release

QGate-Sln-MLRun

The Quality Gate for solution MLRun (and Iguazio). The main aims of the project are:

  • independent quality test (function, integration, performance, vulnerability, acceptance, ... tests)
  • deeper quality checks before full rollout/use in company environments
  • identification of possible compatibility issues (if any)
  • external and independent test coverage
  • community support
  • etc.

The tests use these key components, MLRun solution see GIT mlrun, sample meta-data model see GIT qgate-model and this project.

Test scenarios

The quality gate covers these test scenarios (✅ done, ✔ in-progress, ❌ planned):

  • 01 - Project
    • ✅ TS101: Create project(s)
    • ✅ TS102: Delete project(s)
  • 02 - Feature set
    • ✅ TS201: Create feature set(s)
    • ✅ TS202: Create feature set(s) & Ingest from DataFrame source (one step)
    • ✅ TS203: Create feature set(s) & Ingest from CSV source (one step)
    • ✅ TS204: Create feature set(s) & Ingest from Parquet source (one step)
    • ✅ TS205: Create feature set(s) & Ingest from SQL source (one step)
    • ✔ TS206: Create feature set(s) & Ingest from Kafka source (one step)
    • ✔ TS207: Create feature set(s) & Ingest from HTTP source (one step)
  • 03 - Ingest data
    • ✅ TS301: Ingest data (Preview mode)
    • ✅ TS302: Ingest data to feature set(s) from DataFrame source
    • ✅ TS303: Ingest data to feature set(s) from CSV source
    • ✅ TS304: Ingest data to feature set(s) from Parquet source
    • ✅ TS305: Ingest data to feature set(s) from SQL source
    • ✔ TS306: Ingest data to feature set(s) from Kafka source
    • ✔ TS307: Ingest data to feature set(s) from HTTP source
  • 04 - Ingest data & pipeline
    • ✅ TS401: Ingest data & pipeline (Preview mode)
    • ✅ TS402: Ingest data & pipeline to feature set(s) from DataFrame source
    • ✅ TS403: Ingest data & pipeline to feature set(s) from CSV source
    • ✅ TS404: Ingest data & pipeline to feature set(s) from Parquet source
    • ✅ TS405: Ingest data & pipeline to feature set(s) from SQL source
    • ✔ TS406: Ingest data & pipeline to feature set(s) from Kafka source
    • ❌ TS407: Ingest data & pipeline to feature set(s) from HTTP source
  • 05 - Feature vector
    • ✅ TS501: Create feature vector(s)
  • 06 - Get data from vector
    • ✅ TS601: Get data from off-line feature vector(s)
    • ✅ TS602: Get data from on-line feature vector(s)
  • 07 - Pipeline
    • ✅ TS701: Simple pipeline(s)
    • ✅ TS702: Complex pipeline(s)
    • ✅ TS703: Complex pipeline(s), mass operation
  • 08 - Build model
    • ✅ TS801: Build CART model
    • ❌ TS802: Build XGBoost model
    • ❌ TS803: Build DNN model
  • 09 - Serve model
    • ✅ TS901: Serving score from CART
    • ❌ TS902: Serving score from XGBoost
    • ❌ TS903: Serving score from DNN
  • 10 - Model monitoring/drifting
    • ❌ TS1001: Real-time monitoring
    • ❌ TS1002: Batch monitoring

NOTE: Each test scenario contains addition specific test cases (e.g. with different targets for feature sets, etc.).

Test inputs/outputs

The quality gate tests these inputs/outputs (✅ done, ✔ in-progress, ❌ planned):

  • Outputs (targets)
    • ✅ RedisTarget, ✅ SQLTarget/MySQL, ✔ SQLTarget/Postgres, ✅ KafkaTarget
    • ✅ ParquetTarget, ✅ CSVTarget
    • ✅ File system, ❌ S3, ❌ BlobStorage
  • Inputs (sources)
    • ✅ Pandas/DataFrame, ✅ SQLSource/MySQL, ❌ SQLSource/Postgres, ❌ KafkaSource
    • ✅ ParquetSource, ✅ CSVSource
    • ✅ File system, ❌ S3, ❌ BlobStorage

The current supported sources/targets in MLRun.

Sample of outputs

Sample of outputs

The PART reports in original form, see:

Usage

You can easy use this solution in four steps:

  1. Download content of these two GIT repositories to your local environment
  2. Update file qgate-sln-mlrun.env from qgate-model
    • Update variables for MLRun/Iguazio, see MLRUN_DBPATH, V3IO_USERNAME, V3IO_ACCESS_KEY, V3IO_API
      • setting of V3IO_* is needed only in case of Iguazio installation (not for pure free MLRun)
    • Update variables for QGate, see QGATE_* (basic description directly in *.env)
  3. Run from qgate-sln-mlrun
    • python main.py
  4. See outputs (location is based on QGATE_OUTPUT in configuration)
    • './output/qgt-mlrun-<date> <sequence>.html'
    • './output/qgt-mlrun-<date> <sequence>.txt'

Precondition: You have available MLRun or Iguazio solution (MLRun is part of that), see official installation steps, or directly installation for Desktop Docker.

Tested with

The project was tested with these MLRun versions (see change log):

  • MLRun (in Desktop Docker)
    • MLRun 1.7.0 (plan 08/2024)
    • MLRun 1.6.4, 1.6.3, 1.6.2, 1.6.1, 1.6.0
    • MLRun 1.5.2, 1.5.1, 1.5.0
    • MLRun 1.4.1
    • MLRun 1.3.0
  • Iguazio (k8s, on-prem, VM on VMware)
    • Iguazio 3.5.3 (with MLRun 1.4.1)
    • Iguazio 3.5.1 (with MLRun 1.3.0)

NOTE: Current state, only the last MLRun/Iguazio versions are tested (the backward compatibility is based on MLRun/Iguazio, see).

Others

  • To-Do, the list of expected/future improvements, see
  • Applied limits, the list of applied limits/issues, see
  • How can you test the solution?, you have to focus on Linux env. or Windows with WSL2 (see step by step tutorial)
  • MLRun/Iguazio, the key changes in a nutshell (customer view), see

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多