qgate-sln-mlrun

qgate-sln-mlrun

MLRun解决方案的全面质量检测工具

qgate-sln-mlrun是一个针对MLRun和Iguazio解决方案的质量检测工具。它提供功能、集成、性能和安全性等方面的独立测试,支持项目管理、特征工程、数据处理、模型开发等多个场景。该工具兼容Redis、MySQL、Kafka等多种数据源和目标,可在企业环境全面部署前进行深度质量检查,为MLRun用户提供客观、全面的质量评估。

MLRun质量测试特征工程数据摄取模型部署Github开源项目

License PyPI version fury.io coverage GitHub commit activity GitHub release

QGate-Sln-MLRun

The Quality Gate for solution MLRun (and Iguazio). The main aims of the project are:

  • independent quality test (function, integration, performance, vulnerability, acceptance, ... tests)
  • deeper quality checks before full rollout/use in company environments
  • identification of possible compatibility issues (if any)
  • external and independent test coverage
  • community support
  • etc.

The tests use these key components, MLRun solution see GIT mlrun, sample meta-data model see GIT qgate-model and this project.

Test scenarios

The quality gate covers these test scenarios (✅ done, ✔ in-progress, ❌ planned):

  • 01 - Project
    • ✅ TS101: Create project(s)
    • ✅ TS102: Delete project(s)
  • 02 - Feature set
    • ✅ TS201: Create feature set(s)
    • ✅ TS202: Create feature set(s) & Ingest from DataFrame source (one step)
    • ✅ TS203: Create feature set(s) & Ingest from CSV source (one step)
    • ✅ TS204: Create feature set(s) & Ingest from Parquet source (one step)
    • ✅ TS205: Create feature set(s) & Ingest from SQL source (one step)
    • ✔ TS206: Create feature set(s) & Ingest from Kafka source (one step)
    • ✔ TS207: Create feature set(s) & Ingest from HTTP source (one step)
  • 03 - Ingest data
    • ✅ TS301: Ingest data (Preview mode)
    • ✅ TS302: Ingest data to feature set(s) from DataFrame source
    • ✅ TS303: Ingest data to feature set(s) from CSV source
    • ✅ TS304: Ingest data to feature set(s) from Parquet source
    • ✅ TS305: Ingest data to feature set(s) from SQL source
    • ✔ TS306: Ingest data to feature set(s) from Kafka source
    • ✔ TS307: Ingest data to feature set(s) from HTTP source
  • 04 - Ingest data & pipeline
    • ✅ TS401: Ingest data & pipeline (Preview mode)
    • ✅ TS402: Ingest data & pipeline to feature set(s) from DataFrame source
    • ✅ TS403: Ingest data & pipeline to feature set(s) from CSV source
    • ✅ TS404: Ingest data & pipeline to feature set(s) from Parquet source
    • ✅ TS405: Ingest data & pipeline to feature set(s) from SQL source
    • ✔ TS406: Ingest data & pipeline to feature set(s) from Kafka source
    • ❌ TS407: Ingest data & pipeline to feature set(s) from HTTP source
  • 05 - Feature vector
    • ✅ TS501: Create feature vector(s)
  • 06 - Get data from vector
    • ✅ TS601: Get data from off-line feature vector(s)
    • ✅ TS602: Get data from on-line feature vector(s)
  • 07 - Pipeline
    • ✅ TS701: Simple pipeline(s)
    • ✅ TS702: Complex pipeline(s)
    • ✅ TS703: Complex pipeline(s), mass operation
  • 08 - Build model
    • ✅ TS801: Build CART model
    • ❌ TS802: Build XGBoost model
    • ❌ TS803: Build DNN model
  • 09 - Serve model
    • ✅ TS901: Serving score from CART
    • ❌ TS902: Serving score from XGBoost
    • ❌ TS903: Serving score from DNN
  • 10 - Model monitoring/drifting
    • ❌ TS1001: Real-time monitoring
    • ❌ TS1002: Batch monitoring

NOTE: Each test scenario contains addition specific test cases (e.g. with different targets for feature sets, etc.).

Test inputs/outputs

The quality gate tests these inputs/outputs (✅ done, ✔ in-progress, ❌ planned):

  • Outputs (targets)
    • ✅ RedisTarget, ✅ SQLTarget/MySQL, ✔ SQLTarget/Postgres, ✅ KafkaTarget
    • ✅ ParquetTarget, ✅ CSVTarget
    • ✅ File system, ❌ S3, ❌ BlobStorage
  • Inputs (sources)
    • ✅ Pandas/DataFrame, ✅ SQLSource/MySQL, ❌ SQLSource/Postgres, ❌ KafkaSource
    • ✅ ParquetSource, ✅ CSVSource
    • ✅ File system, ❌ S3, ❌ BlobStorage

The current supported sources/targets in MLRun.

Sample of outputs

Sample of outputs

The PART reports in original form, see:

Usage

You can easy use this solution in four steps:

  1. Download content of these two GIT repositories to your local environment
  2. Update file qgate-sln-mlrun.env from qgate-model
    • Update variables for MLRun/Iguazio, see MLRUN_DBPATH, V3IO_USERNAME, V3IO_ACCESS_KEY, V3IO_API
      • setting of V3IO_* is needed only in case of Iguazio installation (not for pure free MLRun)
    • Update variables for QGate, see QGATE_* (basic description directly in *.env)
  3. Run from qgate-sln-mlrun
    • python main.py
  4. See outputs (location is based on QGATE_OUTPUT in configuration)
    • './output/qgt-mlrun-<date> <sequence>.html'
    • './output/qgt-mlrun-<date> <sequence>.txt'

Precondition: You have available MLRun or Iguazio solution (MLRun is part of that), see official installation steps, or directly installation for Desktop Docker.

Tested with

The project was tested with these MLRun versions (see change log):

  • MLRun (in Desktop Docker)
    • MLRun 1.7.0 (plan 08/2024)
    • MLRun 1.6.4, 1.6.3, 1.6.2, 1.6.1, 1.6.0
    • MLRun 1.5.2, 1.5.1, 1.5.0
    • MLRun 1.4.1
    • MLRun 1.3.0
  • Iguazio (k8s, on-prem, VM on VMware)
    • Iguazio 3.5.3 (with MLRun 1.4.1)
    • Iguazio 3.5.1 (with MLRun 1.3.0)

NOTE: Current state, only the last MLRun/Iguazio versions are tested (the backward compatibility is based on MLRun/Iguazio, see).

Others

  • To-Do, the list of expected/future improvements, see
  • Applied limits, the list of applied limits/issues, see
  • How can you test the solution?, you have to focus on Linux env. or Windows with WSL2 (see step by step tutorial)
  • MLRun/Iguazio, the key changes in a nutshell (customer view), see

编辑推荐精选

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

下拉加载更多