https://github.com/fleet-ai/context/assets/44193474/80381b25-551e-4602-8987-071e92354f6f
<br><br><br>
Install the package and run context
to ask questions about the most up-to-date Python libraries. You will have to provide your OpenAI key to start a session.
pip install fleet-context context
If you'd like to run the CLI tool locally, you can clone this repository, cd into it, then run:
pip install -e . context
If you have an existing package that already uses the keyword context
, you can also activate Fleet Context by running:
fleet-context
<br><br><br>
You can download any library's embeddings and load it up into a dataframe by running:
from context import download_embeddings df = download_embeddings("langchain")
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 901k/901k [00:00<00:00, 2.64MiB/s] id dense_embeddings metadata sparse_values 0 91cd9f22-b3b6-49e1-8672-e1e42a1cf766 [-0.014795871, -0.013938751, 0.02374646, -0.02... {'id': '91cd9f22-b3b6-49e1-8672-e1e42a1cf766',... {'indices': [4279915734, 3106554626, 771291085... 1 80cd620e-7408-4649-aaa7-3fe3c719b4ed [-0.0027519625, 0.013772411, 0.0019546314, -0.... {'id': '80cd620e-7408-4649-aaa7-3fe3c719b4ed',... {'indices': [1497795724, 573857107, 2203090375... 2 87a406ad-e413-42fc-8813-6fa042f80f6a [-0.022883521, -0.0036436971, 0.0026068306, 0.... {'id': '87a406ad-e413-42fc-8813-6fa042f80f6a',... {'indices': [1558403699, 640376310, 358389376,... 3 8bdd8dae-8384-414d-87d2-4390ca29d857 [-0.024882555, -0.0041470923, -0.011419726, -0... {'id': '8bdd8dae-8384-414d-87d2-4390ca29d857',... {'indices': [1558403699, 3778951566, 274301652... 4 8cc5eb61-317a-4196-8099-51c47ef70406 [-0.036361936, 0.0027855083, -0.013214805, -0.... {'id': '8cc5eb61-317a-4196-8099-51c47ef70406',... {'indices': [3586802366, 1110127215, 161253108...
You can see a full list of supported libraries & search through them on our website at the bottom of the page.
<br>If you'd like to directly query from our hosted vector database, you can run:
from context import query results = query("How do I set up Langchain?") for result in results: print(f"{result['metadata']['text']}\n{result['metadata']['text']}")
<br>[ { 'id': '859e8dff-f9ec-497d-aa07-344e48b2f67b', 'score': 0.848275101, 'values': [], 'metadata': { 'library_id': '4506492b-70de-49f1-ba2e-d65bd7048a28', 'page_id': '732e264c-c077-4978-bc93-380d7dc28983', 'parent': '3be9bbcc-b5d6-4a91-9f72-a570c2db33e5', 'section_id': '', 'section_index': 0.0, 'text': "Quickstart ## Installation\u200b To install LangChain run: - Pip - Conda pip install langchain conda install langchain -c conda-forge For more details, see our Installation guide. ## Environment setup\u200b Using LangChain will usually require integrations with one or more model providers, data stores, APIs, etc. For this example, we'll use OpenAI's model APIs. First we'll need to install their Python package: pip install openai Accessing the API requires an API key, which you can get by creating an account and heading here.", 'title': 'Quickstart | 🦜️🔗 Langchain', 'type': '', 'url': 'https://python.langchain.com/docs/get_started/quickstart' } }, # ...and 9 more ]
You can also set a custom k value and filters by any metadata field we support (listed below), plus library_name
:
<br>results = query("How do I set up Langchain?", k=15, filters={"library_name": "langchain"})
One of the biggest advantages of using Fleet Context's embeddings is the amount of information preserved throughout the chunking and embeddings process. You can take advantage of the metadata to improve the quality of your retrievals significantly.
Here's a full list of metadata that we support.
IDs:
library_id
: the uuid of the library referencedpage_id
: the uuid of the page the chunk was retrieved fromparent
: the uuid of the section the chunk was retrieved from (not to be confused with section_id)Page/section information:
url
: the url of the section or page the chunk was retrieved from, formatted as f"{page_url}#{section_id}
section_id
: the section's id
field from the htmlsection_index
: the ordering of the chunk within the section. If there are 2 chunks that have the same parent, this will tell you which one was presented first.Chunk information:
title
: the title of the section or of the page (if section title does not exist)text
: the text, formatted in markdown. Note that markdown is removed from the embeddings for better retrieval results.type
: the type of the chunk. Can be None
(most common) or a defined value like class
, function
, attribute
, data
, exception
, and more.section_index
Re-ranking is commonly known to improve results pretty dramatically. We can take that a step further and take advantage of the fact that the ordering within each section/page is preserved, because it follows that ordering content in the order of which it is presented to the reader will likely derive the best results.
Use section_index
to do a smart reranking of your chunks.
parent
If you notice 2 or more chunks with the same parent
field and are relatively similar in position on the page via section_index
, you can go up one level and query all chunks with the same parent
uuid and pass in the entire document.
type
On retrieval, you can map intent and filter via type
. If the user intends to generate code, you can pre-filter your retrieval to filter type
to just class
or function
. You can use this in creative ways. We've found that pairing it with OpenAI's function calling works really well.
Also, type
allow you to construct your prompt with more clarity, and display more rich information to the user. For example, adding the type to the prompt followed by the chunk will produce better results, because it allows the language model to understand what the chunk is trying to say.
Note that type
is not guaranteed to be present and defined for all libraries — only the ones that have had their documentation generated by Sphinx/readthedocs.
text
Our text
field preserves all information from the HTML elements by converting it to Markdown. This allows for two big advantages:
url
and section_id
You can link the user to the exact section with url
(if supported, it's already pre-loaded with the section within the page).
<br><br><br>
You can use the -l
or --libraries
followed by a list of libraries to limit your session to a certain number of libraries. Defaults to all. View a list of all supported libraries on our website.
<br>context -l langchain pydantic openai
You can select a different OpenAI model by using -m
or --model
. Defaults to gpt-4
. You can set your model to gpt-4-1106-preview
(gpt-4-turbo), gpt-3.5-turbo
, or gpt-3.5-turbo-16k
.
<br>context -m gpt-4-1106-preview
You can use Claude, CodeLlama, Mistral, and many other models by
OPENROUTER_API_KEY
as an environment variablecontext -m phind/phind-codellama-34b
OpenAI models work this way as well; just use e.g. openai/gpt-4-32k
. Other model options are available here.
Optionally, you can attribute your inference token usage to your app or website by setting OPENROUTER_APP_URL
and OPENROUTER_APP_TITLE
. Your app will show on the homepage of https://openrouter.ai if ranked.
Local model support is powered by LM Studio. To use local models, you can use --local
or -n
:
context --local
You need to download your local model through LM Studio. To do that:
The context window is defaulted to 3000. You can change this by using --context_window
or -w
:
<br>context --local --context_window 4096
You can control the number of retrieved chunks by using -k
or --k_value
(defaulted to 15), and you can toggle whether the model cites its source by using -c
or --cite_sources
(defaults to true).
context -k 25 -c false
<br><br><br>
We saw a 37-point improvement for gpt-4
generation scores and a 34-point improvement for gpt-4-turbo
generation scores amongst a randomly sampled set of 50 libraries.
We attribute this to a lack of knowledge for the most up-to-date versions of libraries for gpt-4
, and a combination of relevant up-to-date information to generate with and relevance of information for gpt-4-turbo
.
<br><br><br>
Check out our visualized data here.
You can download all embeddings here.
<img width="100%" alt="Screenshot 2023-11-06 at 10 01 22 PM"
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。
像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率 。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生 活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧 美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。