FiloDB

FiloDB

实时分布式时序数据库 支持Prometheus兼容查询

FiloDB是开源分布式实时内存时序数据库,支持Prometheus兼容查询。它可扩展处理百万级实体,提供灵活标签索引和高效列式压缩。专为低延迟高并发设计,支持实时数据摄取查询,具备容错能力。适用于操作指标存储和分布式追踪等场景。

FiloDB时序数据库Prometheus实时数据分布式Github开源项目

FiloDB

Join the chat at https://gitter.im/velvia/FiloDB Build Status

Distributed, Prometheus-compatible, real-time, in-memory, massively scalable, multi-schema time series / event / operational database.

    _______ __      ____  ____ 
   / ____(_) /___  / __ \/ __ )
  / /_  / / / __ \/ / / / __  |
 / __/ / / / /_/ / /_/ / /_/ / 
/_/   /_/_/\____/_____/_____/  

<!-- START doctoc generated TOC please keep comment here to allow auto update --> <!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->

Table of Contents generated with DocToc

<!-- END doctoc generated TOC please keep comment here to allow auto update -->

Overview

FiloDB is an open-source distributed, real-time, in-memory, massively scalable, multi-schema time series / event / operational database with Prometheus query support and some Spark support as well.

The normal configuration for real-time ingestion is deployment as stand-alone processes in a cluster, ingesting directly from Apache Kafka. The processes form a cluster using peer-to-peer Akka Cluster technology.

  • Massively Scalable - designed to ingest many millions of entities, sharded across multiple processes, with distributed querying built in
  • Prometheus PromQL Support
  • Tag-based Indexing - Support for indexing and fast querying over flexible tags for each time series/partition, just like Prometheus
  • Efficient - holds a huge amount of data in-memory thanks to columnar compression techniques
  • Low-latency - designed for highly concurrent, low-latency workloads such as dashboards and alerting
  • Real Time - data immediately available for querying once ingested
  • Fault Tolerant - designed for dual-datacenter operation with strong recoverability and no single point of failure. explain explain
  • Multi-Schema and Multi-Stream - easily segregate and prioritize different classes of metrics and data. Easily support different types of events.
  • Off Heap - intelligent memory management minimizes garbage collection

Overview presentation -- see the docs folder for design docs.

To compile the .mermaid source files to .png's, install the Mermaid CLI.

Use Cases

  • Real-time operational metrics storage, querying, dashboards, visibility
  • Distributed tracing (ie Zipkin like) storage
  • Low-latency real-time ad-hoc application metric debugging
  • Real-time event storage and querying

Anti-use-cases

  • Heavily transactional, update-oriented workflows
  • OLAP / Analytics

Pre-requisites

  1. Java 11
  2. SBT to build
  3. Apache Cassandra 2.x or 3.x (We prefer using CCM for local testing)
    • For testing, install a single node C* cluster, like this: ccm create v39_single -v 3.9 -n 1 -s
  4. Apache Kafka 0.10.x or above

Optional:

  1. Apache Spark (2.0)

Getting Started

  1. Clone the project and cd into the project directory,

    $ git clone https://github.com/filodb/FiloDB.git
    $ cd FiloDB
    
    • It is recommended you use the last stable released version.
    • To build, run filo-cli (see below) and also sbt spark/assembly.

Follow the instructions below to set up an end to end local environment.

End to End Kafka Developer Setup

This section describes how you can run an end-to-end test locally on a Macbook by ingesting time series data into FiloDB In Memory Store, and querying from it using PromQL.

Use your favorite package manager to install and set up pre-requisite infrastructure. Kafka 0.10.2+ or 0.11 can be used.

brew install kafka
brew services start zookeeper
brew services start kafka

You may see this error from kafka log if you use an M1 chip Mac.

/opt/homebrew/Cellar/kafka/3.3.1_1/libexec/bin/kafka-run-class.sh: line 342: /opt/homebrew/@@HOMEBREW_JAVA@@/bin/java: No such file or directory

To resolve the issue, you may run brew bottle to get the installation file and reinstall kafka through it.

brew bottle --skip-relocation kafka
brew reinstall `ls kafka*bottle*`

Newer versions of ZooKeeper start an admin HTTP server on port 8080, which conflicts with the FiloDB servers. To fix this add the following to zoo.cfg (/opt/homebrew/etc/zookeeper/zoo.cfg if installing via homebrew):

# Disable admin server on 8080
admin.enableServer=false

Create a new Kafka topic with 4 partitions. This is where time series data will be ingested for FiloDB to consume

kafka-topics --create --bootstrap-server localhost:9092 --replication-factor 1 --partitions 4 --topic timeseries-dev

Download and start Cassandra 2.1 or more recent versions (Cassandra 3 and above recommended).

bin/cassandra

You should install Cassandra using a tool which you're the most familiar with.

For instance, one easy way to install it is via brew

brew install cassandra

If you are working on an Apple M1 laptop, you may need to apply workaround mentioned in here to move past the JNA issue.

cp lib/cassandra/jna-5.10.0.jar /opt/homebrew/Cellar/cassandra/4.0.7/libexec/jna-5.6.0.jar

Start Cassandra

brew services start cassandra

Build the required projects

sbt standalone/assembly cli/assembly gateway/assembly

First initialize the keyspaces and tables in Cassandra.

./scripts/schema-create.sh filodb_admin filodb filodb_downsample prometheus 4 1,5 > /tmp/ddl.cql
cqlsh -f /tmp/ddl.cql

Verify that tables were created in filodb, filodb_downsample and filodb-admin keyspaces using cqlsh: First type cqlsh to start the cassandra cli. Then check the keyspaces by entering DESCRIBE keyspaces.

The script below brings up the FiloDB Dev Standalone server, and then sets up the prometheus dataset (NOTE: if you previously started FiloDB and have not cleared the metadata, then the -s is not needed as FiloDB will recover previous ingestion configs from Cassandra. This script targets directly towards the develop branch.)

./filodb-dev-start.sh -o 0

The o argument is the ordinal of the filodb server. This is used to determine which shards are assigned. Note that the above script starts the server with configuration at conf/timeseries-filodb-server.conf. This config file refers to the following datasets that will be loaded on bootstrap:

  • conf/timeseries-dev-source.conf

For queries to work properly you'll want to start a second server to serve all the shards:

./filodb-dev-start.sh -o 1

To quickly verify that both servers are up and set up for ingestion, do this (the output below was formatted using | jq '.', ports may vary):

curl localhost:8080/api/v1/cluster/prometheus/status

{
  "status": "success",
  "data": [
    {
      "shard": 0,
      "status": "ShardStatusActive",
      "address": "akka://filo-standalone"
    },
    {
      "shard": 1,
      "status": "ShardStatusActive",
      "address": "akka://filo-standalone"
    },
    {
      "shard": 2,
      "status": "ShardStatusActive",
      "address": "akka.tcp://filo-standalone@127.0.0.1:57749"
    },
    {
      "shard": 3,
      "status": "ShardStatusActive",
      "address": "akka.tcp://filo-standalone@127.0.0.1:57749"
    }
  ]
}

You can also check the server logs at logs/filodb-server-N.log.

Now run the time series generator. This will ingest 20 time series (the default) with 100 samples each into the Kafka topic with current timestamps. The required argument is the path to the source config. Use --help for all the options.

./dev-gateway.sh --gen-gauge-data conf/timeseries-dev-source.conf

NOTE: Check logs/gateway-server.log for logs.

At this point, you should be able to confirm such a message in the server logs: KAMON counter name=memstore-rows-ingested count=4999

Now you are ready to query FiloDB for the ingested data. The following command should return matching subset of the data that was ingested by the producer.

./filo-cli --host 127.0.0.1 --dataset prometheus --promql 'heap_usage0{_ws_="demo", _ns_="App-2"}'

You can also look at Cassandra to check for persisted data. Look at the tables in filodb and filodb-admin keyspaces.

If the above does not work, try the following:

  1. Delete the Kafka topic and re-create it. Note that Kafka topic deletion might not happen until the server is stopped and restarted
  • Before you remove a topic, update server.properties from configuration(conf) folder and have delete.topic.enable property set to true: delete.topic.enable=true
  • Run below kafka-topics.sh command with “–delete” option to remove “timeseries-dev” and "timeseries-dev-ds-1m":
kafka-topics.sh --bootstrap-server localhost:9092 --topic timeseries-dev --delete
  1. ./filodb-dev-stop.sh and restart filodb instances like above
  2. Re-run ./dev-gateway.sh --gen-gauge-data. You can check consumption via running the TestConsumer, like this: java -Xmx4G -Dconfig.file=conf/timeseries-filodb-server.conf -cp standalone/target/scala-2.12/standalone-assembly-0.8-SNAPSHOT.jar filodb.kafka.TestConsumer conf/timeseries-dev-source.conf. Also, the memstore_rows_ingested metric which is logged to logs/filodb-server-N.log should become nonzero.

To stop the dev server. Note that this will stop all the FiloDB servers if multiple are running.

./filodb-dev-stop.sh

Using the Gateway to stream Application Metrics

FiloDB includes a Gateway server that listens to application metrics and data on a TCP port, converts the data to its internal format, shards it properly and sends it Kafka.

STATUS: Currently the only supported format is Influx Line Protocol. The only tested configuration is using Telegraf with a Prometheus endpoint source and a socket writer using ILP protocol.

The following will scrape metrics from FiloDB using its Prometheus metrics endpoint, and forward it to Kafka to be queried by FiloDB itself :)

  1. Make sure the above steps are followed for setting up and starting FiloDB, configuring datasets and Kafka topics.
  2. Download Telegraf
  3. Start the FiloDB gateway: ./dev-gateway.sh
  4. Start Telegraf using the config file conf/telegraf.conf : telegraf --config conf/telegraf.conf. This config file scrapes from a Prom endpoint at port 9095 and forwards it using ILP format to a TCP socket at 8007, which is the gateway default

Now, metrics from the application having a Prom endpoint at port 9095 will be streamed into Kafka and FiloDB.

Querying the total number of ingesting time series for the last 5 minutes, every 10 seconds:

./filo-cli --host 127.0.0.1 --dataset prometheus --promql 'sum(num_ingesting_partitions{_ws_="local_test",_ns_="filodb"})' --minutes 5

Note that histograms are ingested using FiloDB's optimized histogram format, which leads to very large savings in space. For example, querying the 90%-tile for the size of chunks written to Cassandra, last 5 minutes:

./filo-cli --host 127.0.0.1 --dataset prometheus --promql 'histogram_quantile(0.9, sum(rate(chunk_bytes_per_call{_ws_="local_test",_ns_="filodb"}[3m])))' --minutes 5

Here is how you display the raw histogram data for the same:

./filo-cli --host 127.0.0.1 --dataset prometheus --promql 'chunk_bytes_per_call{_ws_="local_test",_ns_="filodb"}' --minutes 5

Downsample Filo Cluster

To bring up local cluster for serving downsampled data

./filodb-dev-start.sh -o 0 -d

Subsequent servers. Change log file suffix with the -l option for each server.

./filodb-dev-start.sh -o 1 -d

If you had run the unit test DownsamplerMainSpec which populates data into the downsample dataset, you can query downsample results by visiting the following URL:

curl "http://localhost:9080/promql/prometheus/api/v1/query_range?query=my_counter\{_ws_='my_ws',_ns_='my_ns'\}&start=74372801&end=74373042&step=10&verbose=true&spread=2"

Local Scale Testing

Follow the same steps as in original setup, but do this first to clear out existing metadata:

./filo-cli -Dconfig.file=conf/timeseries-filodb-server.conf --command clearMetadata

Then follow the steps to create the dataset etc. Create a different Kafka topic with 128 partitions:

kafka-topics --create --bootstrap-server localhost:9092 --replication-factor 1 --partitions 128 --topic timeseries-perf

Modify server config to load the conf/timeseries-128shards-source.conf dataset instead of the default one.

Start two servers as follows. This will not start ingestion yet:

./filodb-dev-start.sh -o 0 ./filodb-dev-start.sh -o 1

Now if you curl the cluster status you should see 128 shards which are slowly turning active: curl http://127.0.0.1:8080/api/v1/cluster/timeseries/status | jq '.'

Generate records:

./dev-gateway.sh --gen-gauge-data -p

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多