feathr

feathr

企业级统一数据和AI工程开源平台

Feathr是LinkedIn开源的数据和AI工程平台,经过多年生产环境验证。该平台支持数据转换的定义、注册和共享,尤其适合AI建模场景。Feathr采用原生云集成和可扩展架构,提供丰富的转换API,能够处理大规模数据,并在离线批处理、流处理和在线环境中保持统一的数据转换接口。

Feathr特征工程平台数据处理AI模型开源项目Github
<html> <h1 align="center"> <img src="./images/feathr_logo.png" width="256"/> </h1> <h3 align="center"> A scalable, unified data and AI engineering platform for enterprise </h3> <h3 align="center"> Important Links: <a href="https://join.slack.com/t/feathrai/shared_invite/zt-1ffva5u6v-voq0Us7bbKAw873cEzHOSg">Slack</a> & <a href="https://github.com/feathr-ai/feathr/discussions">Discussions</a>. <a href="https://feathr-ai.github.io/feathr/">Docs</a>. </h3> </html>

License GitHub Release Docs Latest Python API CII Best Practices

What is Feathr?

Feathr is a data and AI engineering platform that is widely used in production at LinkedIn for many years and was open sourced in 2022. It is currently a project under LF AI & Data Foundation.

Read our announcement on Open Sourcing Feathr and Feathr on Azure, as well as the announcement from LF AI & Data Foundation.

Feathr lets you:

  • Define data and feature transformations based on raw data sources (batch and streaming) using Pythonic APIs.
  • Register transformations by names and get transformed data(features) for various use cases including AI modeling, compliance, go-to-market and more.
  • Share transformations and data(features) across team and company.

Feathr is particularly useful in AI modeling where it automatically computes your feature transformations and joins them to your training data, using point-in-time-correct semantics to avoid data leakage, and supports materializing and deploying your features for use online in production.

🌟 Feathr Highlights

  • Native cloud integration with simplified and scalable architecture.
  • Battle tested in production for more than 6 years: LinkedIn has been using Feathr in production for over 6 years and backed by a dedicated team.
  • Scalable with built-in optimizations: Feathr can process billions of rows and PB scale data with built-in optimizations such as bloom filters and salted joins.
  • Rich transformation APIs including time-based aggregations, sliding window joins, look-up features, all with point-in-time correctness for AI.
  • Pythonic APIs and highly customizable user-defined functions (UDFs) with native PySpark and Spark SQL support to lower the learning curve for all data scientists.
  • Unified data transformation API works in offline batch, streaming, and online environments.
  • Feathr’s built-in registry makes named transformations and data/feature reuse a breeze.

🏃 Getting Started with Feathr - Feathr Sandbox

The easiest way to try out Feathr is to use the Feathr Sandbox which is a self-contained container with most of Feathr's capabilities and you should be productive in 5 minutes. To use it, simply run this command:

# 80: Feathr UI, 8888: Jupyter, 7080: Interpret docker run -it --rm -p 8888:8888 -p 8081:80 -p 7080:7080 -e GRANT_SUDO=yes feathrfeaturestore/feathr-sandbox:releases-v1.0.0

And you can view Feathr quickstart jupyter notebook:

http://localhost:8888/lab/workspaces/auto-w/tree/local_quickstart_notebook.ipynb

After running the notebook, all the features will be registered in the UI, and you can visit the Feathr UI at:

http://localhost:8081

🛠️ Install Feathr Client Locally

If you want to install Feathr client in a python environment, use this:

pip install feathr

Or use the latest code from GitHub:

pip install git+https://github.com/feathr-ai/feathr.git#subdirectory=feathr_project

☁️ Running Feathr on Cloud for Production

Feathr has native integrations with Databricks and Azure Synapse:

Follow the Feathr ARM deployment guide to run Feathr on Azure. This allows you to quickly get started with automated deployment using Azure Resource Manager template.

If you want to set up everything manually, you can checkout the Feathr CLI deployment guide to run Feathr on Azure. This allows you to understand what is going on and set up one resource at a time.

📓 Documentation

🧪 Samples

NameDescriptionPlatform
NYC Taxi DemoQuickstart notebook that showcases how to define, materialize, and register features with NYC taxi-fare prediction sample data.Azure Synapse, Databricks, Local Spark
Databricks Quickstart NYC Taxi DemoQuickstart Databricks notebook with NYC taxi-fare prediction sample data.Databricks
Feature EmbeddingFeathr UDF example showing how to define and use feature embedding with a pre-trained Transformer model and hotel review sample data.Databricks
Fraud Detection DemoAn example to demonstrate Feature Store using multiple data sources such as user account and transaction data.Azure Synapse, Databricks, Local Spark
Product Recommendation DemoFeathr Feature Store example notebook with a product recommendation scenarioAzure Synapse, Databricks, Local Spark

🔡 Feathr Highlighted Capabilities

Please read Feathr Full Capabilities for more examples. Below are a few selected ones:

Feathr UI

Feathr provides an intuitive UI so you can search and explore all the available features and their corresponding lineages.

You can use Feathr UI to search features, identify data sources, track feature lineages and manage access controls. Check out the latest live demo here to see what Feathr UI can do for you. Use one of following accounts when you are prompted to login:

  • A work or school organization account, includes Office 365 subscribers.
  • Microsoft personal account, this means an account can access to Skype, Outlook.com, OneDrive, and Xbox LIVE.

Feathr UI

For more information on the Feathr UI and the registry behind it, please refer to Feathr Feature Registry

Rich UDF Support

Feathr has highly customizable UDFs with native PySpark and Spark SQL integration to lower learning curve for data scientists:

def add_new_dropoff_and_fare_amount_column(df: DataFrame): df = df.withColumn("f_day_of_week", dayofweek("lpep_dropoff_datetime")) df = df.withColumn("fare_amount_cents", df.fare_amount.cast('double') * 100) return df batch_source = HdfsSource(name="nycTaxiBatchSource", path="abfss://feathrazuretest3fs@feathrazuretest3storage.dfs.core.windows.net/demo_data/green_tripdata_2020-04.csv", preprocessing=add_new_dropoff_and_fare_amount_column, event_timestamp_column="new_lpep_dropoff_datetime", timestamp_format="yyyy-MM-dd HH:mm:ss")

Defining Window Aggregation Features with Point-in-time correctness

agg_features = [Feature(name="f_location_avg_fare", key=location_id, # Query/join key of the feature(group) feature_type=FLOAT, transform=WindowAggTransformation( # Window Aggregation transformation agg_expr="cast_float(fare_amount)", agg_func="AVG", # Apply average aggregation over the window window="90d")), # Over a 90-day window ] agg_anchor = FeatureAnchor(name="aggregationFeatures", source=batch_source, features=agg_features)

Define Features on Top of Other Features - Derived Features

# Compute a new feature(a.k.a. derived feature) on top of an existing feature derived_feature = DerivedFeature(name="f_trip_time_distance", feature_type=FLOAT, key=trip_key, input_features=[f_trip_distance, f_trip_time_duration], transform="f_trip_distance * f_trip_time_duration") # Another example to compute embedding similarity user_embedding = Feature(name="user_embedding", feature_type=DENSE_VECTOR, key=user_key) item_embedding = Feature(name="item_embedding", feature_type=DENSE_VECTOR, key=item_key) user_item_similarity = DerivedFeature(name="user_item_similarity", feature_type=FLOAT, key=[user_key, item_key], input_features=[user_embedding, item_embedding], transform="cosine_similarity(user_embedding, item_embedding)")

Define Streaming Features

Read the Streaming Source Ingestion Guide for more details.

Point in Time Joins

Read Point-in-time Correctness and Point-in-time Join in Feathr for more details.

Running Feathr Examples

Follow the quick start Jupyter Notebook to try it out. There is also a companion quick start guide containing a bit more explanation on the notebook.

🗣️ Tech Talks on Feathr

⚙️ Cloud Integrations and Architecture

Architecture Diagram

Feathr componentCloud Integrations
Offline store – Object StoreAzure Blob Storage, Azure ADLS Gen2, AWS S3
Offline store – SQLAzure SQL DB, Azure Synapse Dedicated SQL Pools, Azure SQL in VM, Snowflake
Streaming SourceKafka, EventHub
Online storeRedis, Azure Cosmos DB
Feature Registry and GovernanceAzure Purview, ANSI SQL such as Azure SQL Server
Compute EngineAzure Synapse Spark Pools, Databricks
Machine Learning PlatformAzure Machine Learning, Jupyter Notebook, Databricks Notebook
File FormatParquet, ORC, Avro, JSON, Delta Lake, CSV
CredentialsAzure Key Vault

🚀 Roadmap

  • More Feathr online client libraries such as Java
  • Support feature versioning
  • Support feature monitoring

👨‍👨‍👦‍👦 Community Guidelines

Build for the community and build by the community. Check out Community Guidelines.

📢 Slack Channel

Join our Slack channel for questions and discussions (or click the [invitation

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多