feathr

feathr

企业级统一数据和AI工程开源平台

Feathr是LinkedIn开源的数据和AI工程平台,经过多年生产环境验证。该平台支持数据转换的定义、注册和共享,尤其适合AI建模场景。Feathr采用原生云集成和可扩展架构,提供丰富的转换API,能够处理大规模数据,并在离线批处理、流处理和在线环境中保持统一的数据转换接口。

Feathr特征工程平台数据处理AI模型开源项目Github
<html> <h1 align="center"> <img src="./images/feathr_logo.png" width="256"/> </h1> <h3 align="center"> A scalable, unified data and AI engineering platform for enterprise </h3> <h3 align="center"> Important Links: <a href="https://join.slack.com/t/feathrai/shared_invite/zt-1ffva5u6v-voq0Us7bbKAw873cEzHOSg">Slack</a> & <a href="https://github.com/feathr-ai/feathr/discussions">Discussions</a>. <a href="https://feathr-ai.github.io/feathr/">Docs</a>. </h3> </html>

License GitHub Release Docs Latest Python API CII Best Practices

What is Feathr?

Feathr is a data and AI engineering platform that is widely used in production at LinkedIn for many years and was open sourced in 2022. It is currently a project under LF AI & Data Foundation.

Read our announcement on Open Sourcing Feathr and Feathr on Azure, as well as the announcement from LF AI & Data Foundation.

Feathr lets you:

  • Define data and feature transformations based on raw data sources (batch and streaming) using Pythonic APIs.
  • Register transformations by names and get transformed data(features) for various use cases including AI modeling, compliance, go-to-market and more.
  • Share transformations and data(features) across team and company.

Feathr is particularly useful in AI modeling where it automatically computes your feature transformations and joins them to your training data, using point-in-time-correct semantics to avoid data leakage, and supports materializing and deploying your features for use online in production.

🌟 Feathr Highlights

  • Native cloud integration with simplified and scalable architecture.
  • Battle tested in production for more than 6 years: LinkedIn has been using Feathr in production for over 6 years and backed by a dedicated team.
  • Scalable with built-in optimizations: Feathr can process billions of rows and PB scale data with built-in optimizations such as bloom filters and salted joins.
  • Rich transformation APIs including time-based aggregations, sliding window joins, look-up features, all with point-in-time correctness for AI.
  • Pythonic APIs and highly customizable user-defined functions (UDFs) with native PySpark and Spark SQL support to lower the learning curve for all data scientists.
  • Unified data transformation API works in offline batch, streaming, and online environments.
  • Feathr’s built-in registry makes named transformations and data/feature reuse a breeze.

🏃 Getting Started with Feathr - Feathr Sandbox

The easiest way to try out Feathr is to use the Feathr Sandbox which is a self-contained container with most of Feathr's capabilities and you should be productive in 5 minutes. To use it, simply run this command:

# 80: Feathr UI, 8888: Jupyter, 7080: Interpret docker run -it --rm -p 8888:8888 -p 8081:80 -p 7080:7080 -e GRANT_SUDO=yes feathrfeaturestore/feathr-sandbox:releases-v1.0.0

And you can view Feathr quickstart jupyter notebook:

http://localhost:8888/lab/workspaces/auto-w/tree/local_quickstart_notebook.ipynb

After running the notebook, all the features will be registered in the UI, and you can visit the Feathr UI at:

http://localhost:8081

🛠️ Install Feathr Client Locally

If you want to install Feathr client in a python environment, use this:

pip install feathr

Or use the latest code from GitHub:

pip install git+https://github.com/feathr-ai/feathr.git#subdirectory=feathr_project

☁️ Running Feathr on Cloud for Production

Feathr has native integrations with Databricks and Azure Synapse:

Follow the Feathr ARM deployment guide to run Feathr on Azure. This allows you to quickly get started with automated deployment using Azure Resource Manager template.

If you want to set up everything manually, you can checkout the Feathr CLI deployment guide to run Feathr on Azure. This allows you to understand what is going on and set up one resource at a time.

📓 Documentation

🧪 Samples

NameDescriptionPlatform
NYC Taxi DemoQuickstart notebook that showcases how to define, materialize, and register features with NYC taxi-fare prediction sample data.Azure Synapse, Databricks, Local Spark
Databricks Quickstart NYC Taxi DemoQuickstart Databricks notebook with NYC taxi-fare prediction sample data.Databricks
Feature EmbeddingFeathr UDF example showing how to define and use feature embedding with a pre-trained Transformer model and hotel review sample data.Databricks
Fraud Detection DemoAn example to demonstrate Feature Store using multiple data sources such as user account and transaction data.Azure Synapse, Databricks, Local Spark
Product Recommendation DemoFeathr Feature Store example notebook with a product recommendation scenarioAzure Synapse, Databricks, Local Spark

🔡 Feathr Highlighted Capabilities

Please read Feathr Full Capabilities for more examples. Below are a few selected ones:

Feathr UI

Feathr provides an intuitive UI so you can search and explore all the available features and their corresponding lineages.

You can use Feathr UI to search features, identify data sources, track feature lineages and manage access controls. Check out the latest live demo here to see what Feathr UI can do for you. Use one of following accounts when you are prompted to login:

  • A work or school organization account, includes Office 365 subscribers.
  • Microsoft personal account, this means an account can access to Skype, Outlook.com, OneDrive, and Xbox LIVE.

Feathr UI

For more information on the Feathr UI and the registry behind it, please refer to Feathr Feature Registry

Rich UDF Support

Feathr has highly customizable UDFs with native PySpark and Spark SQL integration to lower learning curve for data scientists:

def add_new_dropoff_and_fare_amount_column(df: DataFrame): df = df.withColumn("f_day_of_week", dayofweek("lpep_dropoff_datetime")) df = df.withColumn("fare_amount_cents", df.fare_amount.cast('double') * 100) return df batch_source = HdfsSource(name="nycTaxiBatchSource", path="abfss://feathrazuretest3fs@feathrazuretest3storage.dfs.core.windows.net/demo_data/green_tripdata_2020-04.csv", preprocessing=add_new_dropoff_and_fare_amount_column, event_timestamp_column="new_lpep_dropoff_datetime", timestamp_format="yyyy-MM-dd HH:mm:ss")

Defining Window Aggregation Features with Point-in-time correctness

agg_features = [Feature(name="f_location_avg_fare", key=location_id, # Query/join key of the feature(group) feature_type=FLOAT, transform=WindowAggTransformation( # Window Aggregation transformation agg_expr="cast_float(fare_amount)", agg_func="AVG", # Apply average aggregation over the window window="90d")), # Over a 90-day window ] agg_anchor = FeatureAnchor(name="aggregationFeatures", source=batch_source, features=agg_features)

Define Features on Top of Other Features - Derived Features

# Compute a new feature(a.k.a. derived feature) on top of an existing feature derived_feature = DerivedFeature(name="f_trip_time_distance", feature_type=FLOAT, key=trip_key, input_features=[f_trip_distance, f_trip_time_duration], transform="f_trip_distance * f_trip_time_duration") # Another example to compute embedding similarity user_embedding = Feature(name="user_embedding", feature_type=DENSE_VECTOR, key=user_key) item_embedding = Feature(name="item_embedding", feature_type=DENSE_VECTOR, key=item_key) user_item_similarity = DerivedFeature(name="user_item_similarity", feature_type=FLOAT, key=[user_key, item_key], input_features=[user_embedding, item_embedding], transform="cosine_similarity(user_embedding, item_embedding)")

Define Streaming Features

Read the Streaming Source Ingestion Guide for more details.

Point in Time Joins

Read Point-in-time Correctness and Point-in-time Join in Feathr for more details.

Running Feathr Examples

Follow the quick start Jupyter Notebook to try it out. There is also a companion quick start guide containing a bit more explanation on the notebook.

🗣️ Tech Talks on Feathr

⚙️ Cloud Integrations and Architecture

Architecture Diagram

Feathr componentCloud Integrations
Offline store – Object StoreAzure Blob Storage, Azure ADLS Gen2, AWS S3
Offline store – SQLAzure SQL DB, Azure Synapse Dedicated SQL Pools, Azure SQL in VM, Snowflake
Streaming SourceKafka, EventHub
Online storeRedis, Azure Cosmos DB
Feature Registry and GovernanceAzure Purview, ANSI SQL such as Azure SQL Server
Compute EngineAzure Synapse Spark Pools, Databricks
Machine Learning PlatformAzure Machine Learning, Jupyter Notebook, Databricks Notebook
File FormatParquet, ORC, Avro, JSON, Delta Lake, CSV
CredentialsAzure Key Vault

🚀 Roadmap

  • More Feathr online client libraries such as Java
  • Support feature versioning
  • Support feature monitoring

👨‍👨‍👦‍👦 Community Guidelines

Build for the community and build by the community. Check out Community Guidelines.

📢 Slack Channel

Join our Slack channel for questions and discussions (or click the [invitation

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多