Software Defined Network Situational Awareness
<img src="/docs/img/poseidon-logo.png" width="67" height="93" hspace="20"/><a href="https://web.archive.org/web/20170316012151/https://www.blackducksoftware.com/open-source-rookies-2016" ><img src="/docs/img/Rookies16Badge_1.png" width="100" alt="POSEIDON is now BlackDuck 2016 OpenSource Rookie of the year" hspace="20"></a>
Poseidon began as a joint effort between two of the IQT Labs: Cyber Reboot and Lab41. The project's goal is to explore approaches to better identify what nodes are on a given (computer) network and understand what they are doing. The project utilizes Software Defined Networking and machine learning to automatically capture network traffic, extract relevant features from that traffic, perform classifications through trained models, convey results, and provide mechanisms to take further action. While the project works best leveraging modern SDNs, parts of it can still be used with little more than packet capture (pcap) files.
The Poseidon project originally began as an experiment to test the merits of leveraging SDN and machine learning techniques to detect abnormal network behavior. (Please read our blogs posts linked below for several years of background) While that long-term goal remains, the unfortunate reality is that the state of rich, labelled, public, and MODERN network data sets for ML training is pretty poor. Our lab is working on improving the availability of network training sets, but in the near term the project remains focused on 1) improving the accuracy of identifying what a node IS (based on captured IP header data) and 2) developing Poseidon into a "harness" of sorts to house machine learning techniques for additional use cases. (Read: Not just ours!)
Note: Installation on
OS X
is possible but not supported.
To simplify using commands with Docker, we recommend allowing the user that will be executing Poseidon commands be part of the docker
group so they can execute Docker commands without sudo
. Typically, this can be done with:
sudo usermod -aG docker $USER
Followed by closing the existing shell and starting a new one.
NOTE: If you have previously installed Poseidon from a .deb package, please remove it first. Installation from .deb is no longer supported.
Install the poseidon script which we will use to install and manage Poseidon.
curl -L https://raw.githubusercontent.com/IQTLabs/poseidon/main/bin/poseidon -o /usr/local/bin/poseidon
chmod +x /usr/local/bin/poseidon
Poseidon uses a faucetconfrpc server, to maintain Faucet configuration. Poseidon starts its own server for you by default, and also by default Poseidon and Faucet have to be on the same machine. To run Faucet on a separate machine, you will need to start faucetconfrpc on that other machine, and update faucetconfrpc_address
to point to where the faucetconfrpc is running. You may also need to update faucetconfrpc_client
, if you are not using the provided automatically generated keys.
If you have Faucet running already, make sure Faucet is started with the following environment variables, which allow Poseidon to change its config, and receive Faucet events:
export FAUCET_EVENT_SOCK=1
export FAUCET_CONFIG_STAT_RELOAD=1
Faucet is now configured and ready for use with Poseidon.
Faucet supports stacking (distributed switching - multiple switches acting together as one). Poseidon also supports this - Poseidon's mirroring interface should be connected to a port on the root switch. You will need to allocate a port on each non-root switch also, and install a loopback plug (either Ethernet or fiber) in that port. Poseidon will detect stacking and take care of the rest of the details (using Faucet's tunneling feature to move mirror packets from the non-root switches to the root switch's mirror port). The only Poseidon config required is to add the dedicated port on each switch to the controller_mirror_port
dictionary.
You will need to create a directory and config file on the server where Poseidon will run.
sudo mkdir /opt/poseidon
sudo cp config/poseidon.config /opt/poseidon
Now, edit this file. You will need to set at minimum:
Optionally, you may also set controller_proxy_mirror_ports (for switches that don't have their own mirror ports, and can be mirrored with another switch).
From v0.10.0, you can update an existing Poseidon installation with poseidon -u
(your configuration will be preserved). Updating from previous versions is not supported - please remove and reinstall as above. You can also give poseidon -u
a specific git hash if you want to update to an unreleased version.
After installation you'll have a new command poseidon
available for looking at the configuration, logs, and shell, as well as stopping and starting the service.
$ poseidon help
Poseidon, an application that leverages software defined networks (SDN) to acquire and then feed network traffic to a number of machine learning techniques. For more info visit: https://github.com/IQTLabs/poseidon
Usage: poseidon [option]
Options:
-a, api get url to the Poseidon API
-c, config display current configuration info
-d, delete delete Poseidon installation (uses sudo)
-e, shell enter into the Poseidon shell, requires Poseidon to already be running
-h, help print this help
-i, install install Poseidon repo (uses sudo)
-l, logs display the information logs about what Poseidon is doing
-r, restart restart the Poseidon service (uses sudo)
-s, start start the Poseidon service (uses sudo)
-S, stop stop the Poseidon service (uses sudo)
-u, update update Poseidon repo, optionally supply a version (uses sudo)
-V, version get the version installed
Step 0:
Optionally specify a prefix location to install Poseidon by setting an environment variable, if it is unset, it will default to /opt
and Poseidon. (If using Faucet, it will also override /etc
locations to this prefix.)
export POSEIDON_PREFIX=/tmp
Step 1:
poseidon install
Step 2:
Configure Poseidon for your preferred settings. Open /opt/poseidon/poseidon.config
(add the Poseidon prefix if you specified one).
For using Faucet, make sure to minimally change the controller_mirror_ports
to match the switch name and port number of your mirror port. You will also need to update the collector_nic
in the poseidon
section to match the interface name of the NIC your mirror port is connected to.
Step 3:
If you don't have Faucet already and/or you want to Poseidon to spin up Faucet for you as well, simply run the following command and you will be done:
poseidon start
Step 4:
If you are using your own installation of Faucet, you will need to enable communication between Poseidon and Faucet. Poseidon needs to change Faucet's configuration, and Faucet needs to send events to Poseidon. This configuration needs to be set with environment variables (see https://docs.faucet.nz/). For example, if running Faucet with Docker, you will need the following environment configuration in the faucet
service in your docker-compose file:
environment:
FAUCET_CONFIG: '/etc/faucet/faucet.yaml'
FAUCET_EVENT_SOCK: '/var/run/faucet/faucet.sock'
FAUCET_CONFIG_STAT_RELOAD: '1'
If Faucet and Poseidon are running on the same machine, you can start Poseidon and you will be done:
poseidon start --standalone
Step 5:
If you are running Faucet and Poseidon on different machines, configuration is more complex (work to make this easier is ongoing): execute Step 4 first. Then you will need to run event-adapter-rabbitmq
and faucetconfrpc
services on the Faucet host, and change Poseidon's configuration to match.
First start all services from helpers/faucet/docker-compose.yaml
on the Faucet host, using a Docker network that has network connectivity with your Poseidon host. Set FA_RABBIT_HOST
to be the address of your Poseidon host. faucet_certstrap
will generate keys in /opt/faucetconfrpc
which will need to be copied to your Poseidon host. Then modify faucetconfrpc_address
in /opt/poseidon/config/poseidon.config
to point to your Faucet host.
You can now start Poseidon:
poseidon start --standalone
Poseidon by its nature depends on other systems. The following are some common issues and troubleshooting steps.
The most common cause of this problem, with the FAUCET controller, is RabbitMQ connectivity.
# docker ps|grep faucet/event-adapter-rabbitmq
4a7509829be0 faucet/event-adapter-rabbitmq "/usr/local/bin/entr…" 3 days ago Up 3 days
This command reports the time that the most recent FAUCET.Event message was received by Poseidon.
If run repeatedly over a couple of minutes this timestamp should increase.
docker exec -it poseidon_poseidon_1 /bin/sh
/poseidon # wget -q -O- localhost:9304|grep -E ^poseidon_last_rabbitmq_routing_key_time.+FAUCET.Event
poseidon_last_rabbitmq_routing_key_time{routing_key="FAUCET.Event"} 1.5739482267393966e+09
/poseidon # wget -q -O- localhost:9304|grep -E ^poseidon_last_rabbitmq_routing_key_time.+FAUCET.Event
poseidon_last_rabbitmq_routing_key_time{routing_key="FAUCET.Event"} 1.5739487978768678e+09
/poseidon # exit
collector_nic
. The interface must be up before Posiedon starts.# ifconfig enx0023559c2781
enx0023559c2781: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet6 fe80::223:55ff:fe9c:2781 prefixlen 64 scopeid 0x20<link>
ether 00:23:55:9c:27:81 txqueuelen 1000 (Ethernet)
RX packets 82979981 bytes 77510139268 (77.5 GB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 202 bytes 15932 (15.9 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
POSEIDON_PREFIX
in front if it was used.)# find /opt/poseidon_files -type f -name \*pcap |head -5
/opt/poseidon_files/trace_d3f3217106acd75fe7b5c7069a84a227c9e48377_2019-11-15_03_10_41.pcap
/opt/poseidon_files/tcprewrite-dot1q-2019-11-15-06_26_48.529473-UTC/pcap-node-splitter-2019-11-15-06_26_50.192570-UTC/clients/trace_0a6ce9490c193b65c3cad51fffbadeaed4ed5fdd_2019-11-15_06_11_24-client-ip-216-58-196-147-192-168-254-254-216-58-196-147-vssmonitoring-frame-eth-ip-icmp.pcap
/opt/poseidon_files/tcprewrite-dot1q-2019-11-15-06_26_48.529473-UTC/pcap-node-splitter-2019-11-15-06_26_50.192570-UTC/clients/trace_0a6ce9490c193b65c3cad51fffbadeaed4ed5fdd_2019-11-15_06_11_24-miscellaneous-192-168-254-1-192-168-254-254-vssmonitoring-frame-eth-arp.pcap
/opt/poseidon_files/tcprewrite-dot1q-2019-11-15-06_26_48.529473-UTC/pcap-node-splitter-2019-11-15-06_26_50.192570-UTC/clients/trace_0a6ce9490c193b65c3cad51fffbadeaed4ed5fdd_2019-11-15_06_11_24-client-ip-192-168-254-254-192-168-254-254-74-125-200-189-udp-frame-eth-ip-wsshort-port-443.pcap
/opt/poseidon_files/tcprewrite-dot1q-2019-11-15-06_26_48.529473-UTC/pcap-node-splitter-2019-11-15-06_26_50.192570-UTC/servers/trace_0a6ce9490c193b65c3cad51fffbadeaed4ed5fdd_2019-11-15_06_11_24-server-ip-74-125-68-188-192-168-254-254-74-125-68-188-frame-eth-ip-tcp-port-5228.pcap
If installed as described above, poseidon's codebase will be at /opt/poseidon
. At this location, make changes, then run poseidon restart
.
Poseidon logs some data about the network it monitors. Therefore it is important to secure Poseidon's own host (aside from logging, Poseidon can of course change FAUCET's network configuration).
There are two main types of logging at the lowest level. The first is FAUCET events - FAUCET generates an event when it learns on which port a host is present on the network, and the event includes source and destination Ethernet MAC and IP addresses (if present). For example:
2019-11-21 20:18:41,909 [DEBUG] faucet - got faucet message for l2_learn: {'version': 1,
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word ,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供 了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号