Authors: Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat, Fahad Shahbaz Khan, and Huazhu Fu
</p>Awesome Transformers in Medical Imaging
</p>A curated list of awesome Transformers resources in medical imaging (in chronological order), inspired by the other awesome-initiatives. We intend to regularly update the relevant latest papers and their open-source implementations on this page.
We strongly encourage the researchers that want to promote their fantastic work to the community to make pull request to update their paper's information!
Transformers in Medical Imaging: A survey. [25th Jan., 2022] <br>. Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat, Fahad Shahbaz Khan, and Huazhu Fu.<br> [PDF]
Advances in Medical Image Analysis with Vision Transformers: A Comprehensive Review. [9th Jan., 2023].<br> Reza Azad, Amirhossein Kazerouni, Moein Heidari, Ehsan Khodapanah Aghdam, Amirali Molaei, Yiwei Jia, Abin Jose, Rijo Roy, Dorit Merhof [Paper]
Medical image analysis based on transformer: A Review. [13th Aug., 2022].<br> Zhaoshan Liu, Lei Shen.<br> [PDF]
Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives. [3rd June, 2022].<br> Jun Li, Junyu Chen, Yucheng Tang, Ce Wang, Bennett A. Landman, S. Kevin Zhou.<br> [PDF]
Vision Transformers in Medical Computer Vision -- A Contemplative Retrospection. [29th March, 2022].<br> Arshi Parvaiz, Muhammad Anwaar Khalid, Rukhsana Zafar, Huma Ameer, Muhammad Ali, Muhammad Moazam Fraz.<br> [PDF]
Transformers in Medical Image Analysis: A Review. [24th Feb., 2022].<br> Kelei He, Chen Gan, Zhuoyuan Li, Islem Rekik, Zihao Yin, Wen Ji, Yang Gao, Qian Wang, Junfeng Zhang, Dinggang Shen.<br> [PDF]
Application of Transformer in Medical Image Segmentation. [25th Oct., 2021].<br> Wenyin Zhang, Weijie Hao, Yuan Qi and Yong Wu.<br> [PDF]
Attention-Based Transformers for Instance Segmentation of Cells in Microstructures. [20th Nov., 2020] [BIBM, 2020].<br> Tim Prangemeier, Christoph Reich, Heinz Koeppl.<br> [PDF] [Github]
TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. [8th Feb., 2021].<br> Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L. Yuille, Yuyin Zhou.<br> [PDF] [Github]
TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation. [16th Feb., 2021] [⚡MICCAI, 2021].<br> Yundong Zhang, Huiye Liu, Qiang Hu.<br> [PDF] [Github]
Unsupervised Brain Anomaly Detection and Segmentation with Transformers. [23rd Feb., 2021] [MIDL, 2021].<br> Walter Hugo Lopez Pinaya, Petru-Daniel Tudosiu, Robert Gray, Geraint Rees, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso.<br> [PDF]
Convolution-Free Medical Image Segmentation using Transformers. [26th Feb., 2021] [⚡MICCAI, 2021].<br> Davood Karimi, Serge Vasylechko, Ali Gholipour.<br> [PDF]
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation. [4th March, 2021] [⚡MICCAI, 2021].<br> Yutong Xie, Jianpeng Zhang, Chunhua Shen, Yong Xia.<br> [PDF] [Github]
SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation. [5th March, 2021].<br> Boxiang Yun, Yan Wang, Jieneng Chen, Huiyu Wang, Wei Shen, Qingli Li.<br> [PDF] [Github]
TransBTS: Multimodal Brain Tumor Segmentation Using Transformer. [7th March, 2021] [⚡MICCAI, 2021].<br> Wenxuan Wang, Chen Chen, Meng Ding, Jiangyun Li, Hong Yu, Sen Zha.<br> [PDF] [Github]
U-Net Transformer: Self and Cross Attention for Medical Image Segmentation. [10th March, 2021].<br> Olivier Petit, Nicolas Thome, Clément Rambour, Luc Soler.<br> [PDF] [Github]
UNETR: Transformers for 3D Medical Image Segmentation . [18th March, 2021].<br> Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang, Andriy Myronenko, Bennett Landman, Holger Roth, Daguang Xu.<br> [PDF] [Github]
Medical Transformer: Universal Brain Encoder for 3D MRI Analysis. [28th April, 2021].<br> Eunji Jun, Seungwoo Jeong, Da-Woon Heo, Heung-Il Suk.<br> [PDF]
Pyramid Medical Transformer for Medical Image Segmentation . [29th April, 2021].<br> Zhuangzhuang Zhang, Baozhou Sun, Weixiong Zhang.<br> [PDF]
GasHis-Transformer: A Multi-scale Visual Transformer Approach for Gastric Histopathology Image Classification. [29th April, 2021].<br> Haoyuan Chen, Chen Li, Xiaoyan Li, Ge Wang, Weiming Hu, Yixin Li, Wanli Liu, Changhao Sun, Yudong Yao, Yueyang Teng, Marcin Grzegorzek.<br> [PDF]
Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentationr. [12th May, 2021].<br> Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xiaopeng Zhang, Qi Tian, Manning Wang.<br> [PDF]
Medical Image Segmentation Using Squeeze-and-Expansion Transformers. [20th May, 2021] [⚡IJCAI, 2021].<br> Shaohua Li, Xiuchao Sui, Xiangde Luo, Xinxing Xu, Yong Liu, Rick Goh.<br> [PDF] [Github]
A Multi-Branch Hybrid Transformer Network for Corneal Endothelial Cell Segmentation. [21st May, 2021] [⚡MICCAI, 2021].<br> Yinglin Zhang, Risa Higashita, Huazhu Fu, Yanwu Xu, Yang Zhang, Haofeng Liu, Jian Zhang, Jiang Liu.<br> [PDF]
DS-TransUNet:Dual Swin Transformer U-Net for Medical Image Segmentation. [12 June, 2021].<br> Ailiang Lin, Bingzhi Chen, Jiayu Xu, Zheng Zhang, Guangming Lu.<br> [PDF]
More than Encoder: Introducing Transformer Decoder to Upsample. [20th June, 2021].<br> Yijiang Li, Wentian Cai, Ying Gao, Xiping Hu.<br> [PDF]
Multi-Compound Transformer for Accurate Biomedical Image Segmentation. [28th June, 2021] [⚡MICCAI, 2021].<br> Yuanfeng Ji, Ruimao Zhang, Huijie Wang, Zhen Li, Lingyun Wu, Shaoting Zhang, Ping Luo.<br> [PDF] [Github]
UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation. [2nd July, 2021] [⚡MICCAI, 2021].<br> Yunhe Gao, Mu Zhou, Dimitris Metaxas.<br> [PDF] [Github]
Few-Shot Domain Adaptation with Polymorphic Transformers. [10th July, 2021] [⚡MICCAI, 2021].<br> Shaohua Li, Xiuchao Sui, Jie Fu, Huazhu Fu, Xiangde Luo, Yangqin Feng, Xinxing Xu, Yong Liu, Daniel Ting, Rick Siow Mong Goh.<br> [PDF] [Github]
TransClaw U-Net: Claw U-Net with Transformers for Medical Image Segmentation. [12th July, 2021].<br> Yao Chang, Hu Menghan, Zhai Guangtao, Zhang Xiao-Ping.<br> [PDF]
TransAttUnet: Multi-level Attention-guided U-Net with Transformer for Medical Image Segmentation. [12th July, 2021].<br> Bingzhi Chen, Yishu Liu, Zheng Zhang, Guangming Lu, David Zhang.<br> [PDF]
LeViT-UNet: Make Faster Encoders with Transformer for Medical Image Segmentation. [19th July, 2021].<br> Guoping Xu, Xingrong Wu, Xuan Zhang, Xinwei He.<br> [PDF] [Github]
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers. [16th August, 2021].<br> Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, Ling Shao.<br> [PDF] [Github]
Evaluating Transformer-based Semantic Segmentation Networks for Pathological Image Segmentation. [26th August, 2021].<br> Cam Nguyen, Zuhayr Asad, Yuankai Huo.<br> [PDF]
Automated Kidney Tumor Segmentation with Convolution and Transformer Network. [30th August, 2021] [👍 MICCAI KiTS Challenge, 2021].<br> Zhiqiang Shen, Zhiqiang_Shen, Hua Yang, Zhen Zhang, Shaohua Zheng.<br> [PDF]
nnFormer: Interleaved Transformer for Volumetric Segmentation. [7th Sep., 2021].<br> Hong-Yu Zhou, Jiansen Guo, Yinghao Zhang, Lequan Yu, Liansheng Wang, Yizhou Yu.<br> [PDF] [Github]
UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer. [9th, Sep.,].<br> Haonan Wang, Peng Cao, Jiaqi Wang, Osmar R.Zaiane.<br> [PDF]
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号