Transformer 研究加速工具
xFormers 是一个加速 Transformer 研究的开源工具库。它提供可自定义的独立模块,无需样板代码即可使用。该项目包含前沿组件,专注于研究需求,同时注重效率。xFormers 的组件运行快速且内存利用率高,集成了自定义 CUDA 内核和其他相关库。它支持多种注意力机制、前馈网络和位置编码,适用于计算机视觉、自然语言处理等多个领域的研究工作。
xFormers是:
conda install xformers -c xformers
# cuda 11.8版本 pip3 install -U xformers --index-url https://download.pytorch.org/whl/cu118 # cuda 12.1版本 pip3 install -U xformers --index-url https://download.pytorch.org/whl/cu121
# 使用conda或pip,与稳定版要求相同 conda install xformers -c xformers/label/dev pip install --pre -U xformers
# (可选)使构建速度更快 pip install ninja # 如果在不同GPU类型上运行和构建,请设置TORCH_CUDA_ARCH_LIST pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers # (这可能需要几十分钟)
内存高效的多头注意力机制
设置:A100使用f16,测量前向+反向传播的总时间
注意,这是精确的注意力计算,而不是近似,只需调用xformers.ops.memory_efficient_attention
更多基准测试
xFormers提供了许多组件,更多基准测试可在BENCHMARKS.md中找到。
以下命令将提供有关xFormers安装的信息,以及已构建/可用的内核:
python -m xformers.info
让我们从Transformer架构的经典概述开始(插图来自Lin等人的"A Survey of Transformers")
<p align="center"> <img src="https://yellow-cdn.veclightyear.com/ab5030c0/60e72d99-3622-491c-9997-8e60359a1222.png" width=600> </p>您将在此插图中找到主要的仓库边界:Transformer通常由一系列注意力机制、用于编码位置信息的嵌入、前馈块和残差路径(通常称为前层或后层归一化)组成。这些边界并不适用于所有模型,但我们发现在实践中,通过一些调整,它可以涵盖大多数最先进的模型。
因此,模型并非以单一文件的形式实现,这些文件通常难以处理和修改。上图中的大多数概念都对应一个抽象层次,当一个子块存在变体时,应该始终可以选择其中任何一个。您可以专注于特定的封装层次并根据需要进行修改。
<details><summary>注意力机制</summary><p>├── ops # 函数操作符 └ ... ├── components # 组件库,任何组件都可直接使用 │ ├── attention │ │ └ ... # 所有支持的注意力机制 │ ├── feedforward # │ │ └ ... # 所有支持的前馈网络 │ ├── positional_embedding # │ │ └ ... # 所有支持的位置编码 │ ├── activations.py # │ └── multi_head_dispatch.py # (可选)多头包装器 | ├── benchmarks │ └ ... # 大量可用于测试各个部分的基准测试 └── triton └ ... # (可选)所有triton部分,需要triton + CUDA GPU
局部 尤其用于(以及许多其他)
... 添加新的注意力机制 参见Contribution.md
基本上有两种暴露的初始化机制,但用户可以在之后根据自己的需求自由初始化权重。
init_weights()
方法,定义合理的默认值如果使用第二种代码路径(通过模型工厂构建模型),我们会检查所有权重是否已初始化,如果没有初始化可能会报错
(如果你设置了xformers.factory.weight_init.__assert_if_not_initialized = True
)
支持的初始化方案有:
指定初始化方案的一种方法是将config.weight_init
字段设置为相应的枚举值。
这可以很容易地扩展,欢迎提交PR!
module unload cuda; module load cuda/xx.x
更改CUDA运行时,可能还包括nvcc
TORCH_CUDA_ARCH_LIST
环境变量设置为你想要支持的架构。建议设置(构建慢但全面)是export TORCH_CUDA_ARCH_LIST="6.0;6.1;6.2;7.0;7.2;7.5;8.0;8.6"
MAX_JOBS
减少ninja的并行度(例如MAX_JOBS=2
)UnsatisfiableError
,请确保你的conda环境中安装了PyTorch,并且你的设置(PyTorch版本、cuda版本、python版本、操作系统)与xFormers的现有二进制文件匹配xFormers采用BSD风格的许可证,详见LICENSE文件。
如果你在出版物中使用xFormers,请使用以下BibTeX条目进行引用。
@Misc{xFormers2022, author = {Benjamin Lefaudeux and Francisco Massa and Diana Liskovich and Wenhan Xiong and Vittorio Caggiano and Sean Naren and Min Xu and Jieru Hu and Marta Tintore and Susan Zhang and Patrick Labatut and Daniel Haziza and Luca Wehrstedt and Jeremy Reizenstein and Grigory Sizov}, title = {xFormers: A modular and hackable Transformer modelling library}, howpublished = {\url{https://github.com/facebookresearch/xformers}}, year = {2022} }
xFormers使用了以下仓库,或是以接近原始形式使用,或是作为灵感来源:
最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。
像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨 国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号