:new: [2023-10-26] 增加了带寄存器的DINOv2主干网络,遵循视觉Transformer需要寄存器的方法。
Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov, Patrick Labatut, Armand Joulin, Piotr Bojanowski
[论文 #1
] [论文 #2
] [博客
] [演示
] [引用
]
DINOv2的PyTorch实现和预训练模型。详情请参见论文:《DINOv2:无需监督学习鲁棒的视觉特征》和《视觉Transformer需要寄存器》。
DINOv2模型生成高性能的视觉特征,可以直接与简单如线性层的分类器一起用于各种计算机视觉任务;这些视觉特征具有鲁棒性,可以在不同领域表现良好,无需任何微调。这些模型在包含1.42亿张图像的数据集上进行了预训练,没有使用任何标签或注释。
https://github.com/facebookresearch/dinov2/assets/60359573/f168823e-7922-415a-b429-578badf5c356
<div align="center"> 所有帧的patch特征的前三个主成分的可视化,映射到RGB值。 </div>请按照这里的说明安装PyTorch(加载模型唯一需要的依赖)。强烈建议安装支持CUDA的PyTorch版本。
仓库中包含了相应的模型卡片。
import torch # DINOv2 dinov2_vits14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14') dinov2_vitb14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14') dinov2_vitl14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14') dinov2_vitg14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitg14') # 带寄存器的DINOv2 dinov2_vits14_reg = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14_reg') dinov2_vitb14_reg = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14_reg') dinov2_vitl14_reg = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14_reg') dinov2_vitg14_reg = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitg14_reg')
可以通过PyTorch Hub加载(完整的)分类器模型:
import torch # DINOv2 dinov2_vits14_lc = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14_lc') dinov2_vitb14_lc = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14_lc') dinov2_vitl14_lc = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14_lc') dinov2_vitg14_lc = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitg14_lc') # 带寄存器的DINOv2 dinov2_vits14_reg_lc = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14_reg_lc') dinov2_vitb14_reg_lc = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14_reg_lc') dinov2_vitl14_reg_lc = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14_reg_lc') dinov2_vitg14_reg_lc = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitg14_reg_lc')
训练和评估代码需要PyTorch 2.0和xFormers 0.0.18,以及其他一些第三方软件包。请注意,代码仅在指定版本上进行过测试,并且需要在Linux环境下运行。要设置训练和评估所需的所有依赖项,请按照以下说明操作:
conda (推荐) - 克隆仓库,然后使用提供的环境定义创建并激活dinov2
conda环境:
conda env create -f conda.yaml conda activate dinov2
pip - 克隆仓库,然后使用提供的requirements.txt
安装依赖项:
pip install -r requirements.txt
对于密集任务(深度估计和语义分割),还有额外的依赖项(特定版本的mmcv
和mmsegmentation
),这些都包含在extras
依赖规范中:
conda (推荐):
conda env create -f conda-extras.yaml conda activate dinov2-extras
pip:
pip install -r requirements.txt -r requirements-extras.txt
数据集的根目录应包含以下内容:
<ROOT>/test/ILSVRC2012_test_00000001.JPEG
<ROOT>/test/[..]
<ROOT>/test/ILSVRC2012_test_00100000.JPEG
<ROOT>/train/n01440764/n01440764_10026.JPEG
<ROOT>/train/[...]
<ROOT>/train/n15075141/n15075141_9993.JPEG
<ROOT>/val/n01440764/ILSVRC2012_val_00000293.JPEG
<ROOT>/val/[...]
<ROOT>/val/n15075141/ILSVRC2012_val_00049174.JPEG
<ROOT>/labels.txt
提供的数据集实现期望在额外目录下存在几个额外的元数据文件:
<EXTRA>/class-ids-TRAIN.npy
<EXTRA>/class-ids-VAL.npy
<EXTRA>/class-names-TRAIN.npy
<EXTRA>/class-names-VAL.npy
<EXTRA>/entries-TEST.npy
<EXTRA>/entries-TRAIN.npy
<EXTRA>/entries-VAL.npy
这些元数据文件可以通过以下Python代码(一次性)生成:
from dinov2.data.datasets import ImageNet for split in ImageNet.Split: dataset = ImageNet(split=split, root="<ROOT>", extra="<EXTRA>") dataset.dump_extra()
请注意,根目录和额外目录不必是不同的目录。
请根据您的本地设置调整数据集类。
<br />:warning: 要执行下一节中提供的用于训练和评估的命令,dinov2
包应包含在Python模块搜索路径中,即只需在运行命令前加上PYTHONPATH=.
前缀。
在SLURM集群环境中使用submitit在4个A100-80GB节点(32个GPU)上运行DINOv2训练:
python dinov2/run/train/train.py \ --nodes 4 \ --config-file dinov2/configs/train/vitl16_short.yaml \ --output-dir <输出目录路径> \ train.dataset_path=ImageNet:split=TRAIN:root=<数据集路径>:extra=<数据集路径>
训练时间大约为1天,最终的检查点应在k-NN评估中达到81.6%,在线性评估中达到82.9%。
训练代码每12500次迭代会在eval
文件夹中保存教师的权重以供评估。
在SLURM集群环境中使用submitit在12个A100-80GB节点(96个GPU)上运行DINOv2训练:
python dinov2/run/train/train.py \ --nodes 12 \ --config-file dinov2/configs/train/vitl14.yaml \ --output-dir <输出目录路径> \ train.dataset_path=ImageNet22k:root=<数据集路径>:extra=<数据集路径>
训练时间大约为3.3天,最终的检查点应在k-NN评估中达到82.0%,在线性评估中达到84.5%。
训练代码每12500次迭代会在eval
文件夹中保存教师的权重以供评估。
训练代码会定期保存教师权重。为了评估模型,在单个节点上运行以下评估:
python dinov2/run/eval/knn.py \ --config-file <输出目录路径>/config.yaml \ --pretrained-weights <输出目录路径>/eval/training_24999/teacher_checkpoint.pth \ --output-dir <输出目录路径>/eval/training_24999/knn \ --train-dataset ImageNet:split=TRAIN:root=<数据集路径>:extra=<数据集路径> \ --val-dataset ImageNet:split=VAL:root=<数据集路径>:extra=<数据集路径>
python dinov2/run/eval/log_regression.py \ --config-file <输出目录路径>/config.yaml \ --pretrained-weights <输出目录路径>/eval/training_24999/teacher_checkpoint.pth \ --output-dir <输出目录路径>/eval/training_24999/logreg \ --train-dataset ImageNet:split=TRAIN:root=<数据集路径>:extra=<数据集路径> \ --val-dataset ImageNet:split=VAL:root=<数据集路径>:extra=<数据集路径>
python dinov2/run/eval/linear.py \ --config-file <输出目录路径>/config.yaml \ --pretrained-weights <输出目录路径>/eval/training_24999/teacher_checkpoint.pth \ --output-dir <输出目录路径>/eval/training_24999/linear \ --train-dataset ImageNet:split=TRAIN:root=<数据集路径>:extra=<数据集路径> \ --val-dataset ImageNet:split=VAL:root=<数据集路径>:extra=<数据集路径>
我们发布了评估不同模型的权重:
<table style="margin: auto"> <tr> <th>模型</th> <th>带<br />寄存器</th> <th>ImageNet<br />top-1</th> <th>线性评估</th> </tr> <tr> <td>ViT-S/14 蒸馏</td> <td align="center">:x:</td> <td align="right">81.1%</td> <td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_linear_head.pth">线性头权重</a></td> </tr> <tr> <td>ViT-S/14 蒸馏</td> <td align="center">:white_check_mark:</td> <td align="right">80.8%</td> <td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_reg4_linear_head.pth">线性头权重</a></td> </tr> <tr> <td>ViT-B/14 蒸馏</td> <td align="center">:x:</td> <td align="right">84.5%</td> <td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_linear_head.pth">线性头权重</a></td> </tr> <tr> <td>ViT-B/14 蒸馏</td> <td align="center">:white_check_mark:</td> <td align="right">84.4%</td> <td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_reg4_linear_head.pth">线性头权重</a></td> </tr> <tr> <td>ViT-L/14 蒸馏</td> <td align="center">:x:</td> <td align="right">86.3%</td> <td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_linear_head.pth">线性头权重</a></td> </tr> <tr> <td>ViT-L/14 蒸馏</td> <td align="center">:white_check_mark:</td> <td align="right">86.5%</td> <td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_reg4_linear_head.pth">线性头权重</a></td> </tr> <tr> <td>ViT-g/14</td> <td align="center">:x:</td> <td align="right">86.5%</td> <td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_linear_head.pth">线性头权重</a></td> </tr> <tr> <td>ViT-g/14</td> <td align="center">:white_check_mark:</td> <td align="right">87.0%</td> <td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_reg4_linear_head.pth">线性头权重</a></td> </tr> </table>可以按如下方式在ImageNet-1k上评估所提供的预训练模型权重的性能:
python dinov2/run/eval/linear.py \ --config-file dinov2/configs/eval/vitg14_pretrain.yaml \ --pretrained-weights https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_pretrain.pth \ --train-dataset ImageNet:split=TRAIN:root=<数据集路径>:extra=<数据集路径> \ --val-dataset ImageNet:split=VAL:root=<数据集路径>:extra=<数据集路径>
提供了几个笔记本以帮助社区利用模型和代码:
<ul> <li><a href="https://github.com/facebookresearch/dinov2/blob/main/notebooks/depth_estimation.ipynb">深度估计</a> - 如何通过mmcv加载和使用深度头与匹配的主干网络结合</li> <li><a href="https://github.com/facebookresearch/dinov2/blob/main/notebooks/semantic_segmentation.ipynb">语义分割</a> - 如何通过mmcv加载和使用分割头与匹配的主干网络结合,以及如何加载和使用在ADE20K上训练的基于Mask2Former的分割模型</li> </ul>DINOv2代码和模型权重根据Apache License 2.0发布。有关更多详细信息,请参阅LICENSE。
如果您发现这个仓库有用,请考虑给予星标:star:和引用:t-rex::
@misc{oquab2023dinov2,
title={DINOv2: Learning Robust Visual Features without Supervision},
author={Oquab, Maxime and Darcet, Timothée and Moutakanni, Theo and Vo, Huy V. and Szafraniec, Marc and Khalidov, Vasil and Fernandez, Pierre and Haziza, Daniel and Massa, Francisco and El-Nouby, Alaaeldin and Howes, Russell and Huang, Po-Yao and Xu, Hu and Sharma, Vasu and Li, Shang-Wen and Galuba, Wojciech and Rabbat, Mike and Assran, Mido and Ballas, Nicolas and Synnaeve, Gabriel and Misra, Ishan and Jegou, Herve and Mairal, Julien and Labatut, Patrick and Joulin, Armand and Bojanowski, Piotr},
journal={arXiv:2304.07193},
year={2023}
}
@misc{darcet2023vitneedreg,
title={Vision Transformers Need Registers},
author={Darcet, Timothée and Oquab, Maxime and Mairal, Julien and Bojanowski, Piotr},
journal={arXiv:2309.16588},
year={2023}
}
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号