Jamie Tolan, Hung-I Yang, Benjamin Nosarzewski, Guillaume Couairon, Huy V. Vo, John Brandt, Justine Spore, Sayantan Majumdar, Daniel Haziza, Janaki Vamaraju, Théo Moutakanni, Piotr Bojanowski, Tracy Johns, Brian White, Tobias Tiecke, Camille Couprie
[论文
][ArxiV [相同内容]
] [博客
] [BibTeX
]
高分辨率冠层高度预测推理的 PyTorch 实现和预训练模型。详情请参阅论文: 使用自监督视觉 Transformer 和卷积解码器在航空激光雷达上训练的超高分辨率冠层高度地图从 RGB 图像生成。
我们与 Meta 的物理建模和可持续发展团队以及世界资源研究所合作,将 DINOv2:无监督学习鲁棒视觉特征 应用于冠层高度地图(CHM)预测问题。我们使用这种技术在全球约 1800 万张卫星图像上预训练主干网络。然后,我们在一个覆盖美国几千平方公里森林的适度规模的训练数据集上训练了一个 CHM 预测器,将这个主干网络作为特征提取器。 我们在论文中定量和定性地展示了大规模自监督学习的优势,所获得的表示具有versatility,能够推广到不同的地理区域和输入图像。
使用此模型获得的地图可在 https://wri-datalab.earthengine.app/view/submeter-canopyheight 查看。
pytorch, pytorch lightning, pandas
成功创建推理环境的示例
conda create -n hrch python=3.9 -y
conda activate hrch
conda install pytorch==2.0.1 torchvision==0.15.2 pytorch-cuda=11.7 -c pytorch -c nvidia
pip install pytorch_lightning==1.7
pip install pandas
pip install matplotlib
pip install torchmetrics==0.11.4
您可以从以下位置下载数据和保存的检查点:
s3://dataforgood-fb-data/forests/v1/models/
要准备数据,在克隆的仓库中运行以下命令:
aws s3 --no-sign-request cp --recursive s3://dataforgood-fb-data/forests/v1/models/ .
unzip data.zip
rm data.zip
尽管我们的方法设计用于处理卫星图像,但它也可以从航空图像估算冠层高度。
我们在 data.zip 中分享了我们为论文创建的 Neon 测试集的航空图像。
为了在不需要 Maxar 图像的情况下自动进行颜色平衡,我们从航空图像(Neon 训练集)训练了一个网络,以预测相应 Maxar 图像的第 95 和第 5 百分位数:saved_checkpoints/aerial_normalization_quantiles_predictor.ckpt
在 saved_checkpoints 目录中有:
SSLhuge_satellite.pth (2.9G):在卫星图像上训练的编码器,在卫星图像上训练的解码器。在 GPU 上进行推理时使用此模型。使用 RGB 卫星图像作为输入可获得最佳结果。
compressed_SSLhuge.pth (749M):量化后的 SSLhuge_satellite.pth。论文评估中使用的模型。
compressed_SSLhuge_aerial.pth (749M):在卫星图像上训练的编码器,在航空图像上训练的解码器。
compressed_SSLlarge.pth (400M):使用大型模型进行的消融实验。
python inference.py --checkpoint saved_checkpoints/SSLhuge_satellite.pth
mae 3.15
r2_block 0.51
Bias: -1.60
以下是使用发布的不同模型在航空图像上预期的性能。请注意,此表中的前三个模型仅在卫星数据上训练,并在此处在域外上下文中进行评估。
SSL large | SSL huge | compressed SSL huge | SSL aerial | |
---|---|---|---|---|
MAE | 3.31 | 3.15 | 3.08 | 2.5 |
R2 block | 0.37 | 0.51 | 0.54 | 0.7 |
Bias | -1.4 | -1.6 | -1.6 | -2.1 |
我们在此代码发布中不包含 GEDI 校正步骤。
"models" 文件夹包含从 Dinov2 团队借用的代码,我们感谢所有贡献者。
使用压缩模型进行的推理尚未在 GPU 上测试(仅限 CPU)。
所有 SSL 模型的主干权重相同。主干已在经过过滤以主要包含植被的图像上训练。
HighResCanopyHeight 代码和模型权重根据 Apache License 2.0 发布。有关其他详细信息,请参阅 LICENSE。
如果您发现此仓库有用,请考虑给予星标 :star: 和引用 :t-rex::
@article{tolan2024very,
title={Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on aerial lidar},
author={Tolan, Jamie and Yang, Hung-I and Nosarzewski, Benjamin and Couairon, Guillaume and Vo, Huy V and Brandt, John and Spore, Justine and Majumdar, Sayantan and Haziza, Daniel and Vamaraju, Janaki and others},
journal={Remote Sensing of Environment},
volume={300},
pages={113888},
year={2024}
}
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号