vector-search-class-notes

vector-search-class-notes

向量搜索和数据库在人工智能长期记忆中的应用

该项目深入探讨人工智能长期记忆技术中的向量搜索和数据库应用。课程内容涵盖向量搜索的理论基础和实际实现,包括文本和图像嵌入、低维向量搜索、降维技术、近似最近邻搜索、聚类和量化等关键主题。由Pinecone创始人Edo Liberty和FAISS主要开发者Matthijs Douze等行业专家主讲,为学习者提供全面而专业的向量搜索知识。

向量搜索AI机器学习数据库嵌入Github开源项目

Long Term Memory in AI - Vector Search and Databases

NOTE: COS 597A class times changed for Fall semester 2023. Classes will be held 9am-12noon.

Instructors

Overview

Long Term Memory is a foundational capability in the modern AI Stack. At their core, these systems use vector search. Vector search is also a basic tool for systems that manipulate large collections of media like search engines, knowledge bases, content moderation tools, recommendation systems, etc. As such, the discipline lays at the intersection of Artificial Intelligence and Database Management Systems. This course will cover the theoretical foundations and practical implementation of vector search applications, algorithms, and systems. The course will be evaluated with project and in-class presentation.

Contribute

All class materials are intended to be used freely by academics anywhere, students and professors alike. Please contribute in the form of pull requests or by opening issues.

https://github.com/edoliberty/vector-search-class-notes

On unix-like systems (e.g. macos) with bibtex and pdflatex available you should be able to run this:

git clone git@github.com:edoliberty/vector-search-class-notes.git
cd vector-search-class-notes
./build

Syllabus

  • 9/8 - Class 1 - Introduction to Vector Search [Matthijs + Edo + Nataly]

    • Intro to the course: Topic, Schedule, Project, Grading, ...

    • Embeddings as an information bottleneck. Instead of learning end-to-end, use embeddings as an intermediate representation

    • Advantages: scalability, instant updates, and explainability

    • Typical volumes of data and scalability. Embeddings are the only way to manage / access large databases

    • The embedding contract: the embedding extractor and embedding indexer agree on the meaning of the distance. Separation of concerns.

    • The vector space model in information retrieval

    • Vector embeddings in machine learning

    • Define vector, vector search, ranking, retrieval, recall

  • 9/15 - Class 2 - Text embeddings [Matthijs]

    • 2-layer word embeddings. Word2vec and fastText, obtained via a factorization of a co-occurrence matrix. Embedding arithmetic: king + woman - man = queen, (already based on similarity search)
    • Sentence embeddings: How to train, masked LM. Properties of sentence embeddings.
    • Large Language Models: reasoning as an emerging property of a LM. What happens when the training set = the whole web
  • 9/22 - Class 3 - Image embeddings [Matthijs]

    • Pixel structures of images. Early works on direct pixel indexing
    • Traditional CV models. Global descriptors (GIST). Local descriptors (SIFT and friends)Direct indexing of local descriptors for image matching, local descriptor pooling (Fisher, VLAD)
    • Convolutional Neural Nets. Off-the-shelf models. Trained specifically (contrastive learning, self-supervised learning)
    • Modern Computer Vision models
  • 9/29 - Class 4 - Low Dimensional Vector Search [Edo]

    • Vector search problem definition
    • k-d tree, space partitioning data structures
    • Worst case proof for kd-trees
    • Probabilistic inequalities. Recap of basic inequalities: Markov, Chernoof, Hoeffding
    • Concentration Of Measure phenomena. Orthogonality of random vectors in high dimensions
    • Curse of dimensionality and the failure of space partitioning
  • 10/6 - Class 5 - Dimensionality Reduction [Edo]

    • Singular Value Decomposition (SVD)
    • Applications of the SVD
    • Rank-k approximation in the spectral norm
    • Rank-k approximation in the Frobenius norm
    • Linear regression in the least-squared loss
    • PCA, Optimal squared loss dimension reduction
    • Closest orthogonal matrix
    • Computing the SVD: The power method
    • Random-projection
    • Matrices with normally distributed independent entries
    • Fast Random Projections
  • 10/13 - No Class - Midterm Examination Week

  • 10/20 - No Class - Fall Recess

  • 10/27 - Class 6 - Approximate Nearest Neighbor Search [Edo]

    • Definition of Approximate Nearest Neighbor Search (ANNS)
    • Criteria: Speed / accuracy / memory usage / updateability / index construction time
    • Definition of Locality Sensitive Hashing and examples
    • The LSH Algorithm
    • LSH Analysis, proof of correctness, and asymptotics
  • 11/3 - Class 7 - Clustering [Edo]

    • K-means clustering - mean squared error criterion.
    • Lloyd’s Algorithm
    • k-means and PCA
    • ε-net argument for fixed dimensions
    • Sampling based seeding for k-means
    • k-means++
    • The Inverted File Model (IVF)
  • 11/10 - Class 8 - Quantization for lossy vector compression This class will take place remotely via zoom, see the edstem message to get the link [Matthijs]

    • Python notebook corresponding to the class: Class_08_runbook_for_students.ipynb
    • Vector quantization is a topline (directly optimizes the objective)
    • Binary quantization and hamming comparison
    • Product quantization. Chunked vector quantization. Optimized vector quantization
    • Additive quantization. Extension of product quantization. Difficulty in training approximations (Residual quantization, CQ, TQ, LSQ, etc.)
    • Cost of coarse quantization vs. inverted list scanning
  • 11/17 - Class 9 - Graph based indexes by Guest lecturer Harsha Vardhan Simhadri.

    • Early works: hierarchical k-means
    • Neighborhood graphs. How to construct them. Nearest Neighbor Descent
    • Greedy search in Neighborhood graphs. That does not work -- need long jumps
    • HNSW. A practical hierarchical graph-based index
    • NSG. Evolving a graph k-NN graph
  • 11/24 - No Class - Thanksgiving Recess

  • 12/1 - Class 10 - Student project and paper presentations [Edo + Nataly]

Project

Class work includes a final project. It will be graded based on

  1. 50% - Project submission
  2. 50% - In-class presentation

Projects can be in three different flavors

  • Theory/Research: propose a new algorithm for a problem we explored in class (or modify an existing one), explain what it achieves, give experimental evidence or a proof for its behavior. If you choose this kind of project you are expected to submit a write up.
  • Data Science/AI: create an interesting use case for vector search using Pinecone, explain what data you used, what value your application brings, and what insights you gained. If you choose this kind of project you are expected to submit code (e.g. Jupyter Notebooks) and a writeup of your results and insights.
  • Engineering/HPC: adapt or add to FAISS, explain your improvements, show experimental results. If you choose this kind of project you are expected to submit a branch of FAISS for review along with a short writeup of your suggested improvement and experiments.

Project schedule  

  • 11/24 - One-page project proposal approved by the instructors
  • 12/1 - Final project submission
  • 12/1 - In-class presentation

Some more details

  • Project Instructor: Nataly nbrukhim@princeton.edu
  • Projects can be worked on individually, in teams of two or at most three students.
  • Expect to spend a few hours over the semester on the project proposal. Try to get it approved well ahead of the deadline.
  • Expect to spent 3-5 full days on the project itself (on par with preparing for a final exam)
  • In class project project presentation are 5 minutes per student (teams of two students present for 10 minutes. Teams of three, 15 minutes).  

Selected Literature

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多