emotion2vec

emotion2vec

通用语音情感表示模型开源实现

emotion2vec是一个开源的语音情感表示模型,采用自监督预训练方法提取跨任务、跨语言和跨场景的通用情感特征。该模型在IEMOCAP等数据集上取得了领先性能,并在多语言和多任务上展现出优异表现。项目开源了预训练模型、特征提取工具和下游任务训练脚本,为语音情感分析研究提供了有力支持。

emotion2vec语音情感识别自监督预训练特征提取情感表征Github开源项目
<div align="center"> <h1> EMOTION2VEC </h1> <p> 用于提取特征和训练下游模型的官方 PyTorch 代码 <br> <b><em>emotion2vec: 语音情感表征的自监督预训练</em></b> </p> <p> <img src="https://yellow-cdn.veclightyear.com/ab5030c0/3f960606-e985-4e47-92b8-c7d058176997.png" alt="emotion2vec 标志" style="width: 200px; height: 200px;"> </p> <p> </p> <a href="https://github.com/ddlBoJack/emotion2vec"><img src="https://img.shields.io/badge/平台-linux-lightgrey" alt="版本"></a> <a href="https://github.com/ddlBoJack/emotion2vec"><img src="https://img.shields.io/badge/Python-3.8+-orange" alt="版本"></a> <a href="https://github.com/ddlBoJack/emotion2vec"><img src="https://img.shields.io/badge/PyTorch-1.13+-brightgreen" alt="python"></a> <a href="https://github.com/ddlBoJack/emotion2vec"><img src="https://yellow-cdn.veclightyear.com/ab5030c0/ce3c24dd-2e35-4672-a1fd-6ab156adb301.svg" alt="mit"></a> </div>

新闻

  • [2024年6月] 🔧 我们修复了 emotion2vec+ 中的一个错误。请重新拉取最新代码。
  • [2024年5月] 🔥 语音情感识别基础模型:emotion2vec+,支持9类情感,已在 Model ScopeHugging Face 上发布。查看一系列用于高性能语音情感识别的 emotion2vec+ (seed, base, large) 模型**(我们推荐使用此版本,而非2024年1月发布的版本)**。
  • [2024年1月] 基于 emotion2vec 迭代微调的9类情感识别模型已在 modelscopeFunASR 上发布。
  • [2024年1月] emotion2vec 已集成到 modelscopeFunASR
  • [2023年12月] 我们发布了 论文,并创建了一个 微信群 用于 emotion2vec。
  • [2023年11月] 我们发布了 emotion2vec 的代码、检查点和提取的特征。

模型卡片

GitHub 仓库:emotion2vec

模型⭐Model Scope🤗Hugging Face微调数据(小时)
emotion2vec链接链接/
emotion2vec+ seed链接链接201
emotion2vec+ base链接链接4788
emotion2vec+ large链接链接42526

概述

emotion2vec+:语音情感识别基础模型

指南

emotion2vec+ 是一系列语音情感识别(SER)基础模型。我们旨在训练一个语音情感识别领域的"whisper",通过数据驱动的方法克服语言和录音环境的影响,实现通用、鲁棒的情感识别能力。emotion2vec+ 的性能显著超过了 Hugging Face 上其他下载量很高的开源模型。

数据工程

我们提供了3个版本的 emotion2vec+,每个版本都是从其前身的数据衍生而来。如果您需要一个专注于语音情感表征的模型,请参考 emotion2vec:通用语音情感表征模型

  • emotion2vec+ seed:使用来自 EmoBox 的学术语音情感数据进行微调
  • emotion2vec+ base:使用经过筛选的大规模伪标记数据进行微调,得到基础大小模型(约90M)
  • emotion2vec+ large:使用经过筛选的大规模伪标记数据进行微调,得到大型模型(约300M)

下图illustrates了迭代过程,最终使用160k小时语音情感数据中的40k小时训练得到 emotion2vec+ large 模型。数据工程的详细信息将稍后公布。

性能

EmoBox 上对4类主要情感的性能(无需微调)。模型性能的详细信息将稍后公布。

使用检查点进行推理

从 modelscope 安装(推荐)

  1. 安装 modelscope 和 funasr
pip install -U funasr modelscope
  1. 运行代码
''' 使用微调后的情感识别模型 rec_result 包含 {'feats', 'labels', 'scores'} extract_embedding=False:9类情感及其得分 extract_embedding=True:9类情感及其得分,以及特征 9类情感: iic/emotion2vec_plus_seed, iic/emotion2vec_plus_base, iic/emotion2vec_plus_large(2024年5月发布) iic/emotion2vec_base_finetuned(2024年1月发布) 0: 愤怒 1: 厌恶 2: 恐惧 3: 高兴 4: 中性 5: 其他 6: 悲伤 7: 惊讶 8: 未知 ''' from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks inference_pipeline = pipeline( task=Tasks.emotion_recognition, model="iic/emotion2vec_large") # 可选:iic/emotion2vec_plus_seed, iic/emotion2vec_plus_base, iic/emotion2vec_plus_large 和 iic/emotion2vec_base_finetuned rec_result = inference_pipeline('https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav', output_dir="./outputs", granularity="utterance", extract_embedding=False) print(rec_result)

模型将自动下载。

从 FunASR 安装

  1. 安装 funasr
pip install -U funasr
  1. 运行代码
''' 使用微调后的情感识别模型 rec_result 包含 {'feats', 'labels', 'scores'} extract_embedding=False:9类情感及其得分 extract_embedding=True:9类情感及其得分,以及特征 9类情感: iic/emotion2vec_plus_seed, iic/emotion2vec_plus_base, iic/emotion2vec_plus_large(2024年5月发布) iic/emotion2vec_base_finetuned(2024年1月发布) 0: 愤怒 1: 厌恶 2: 恐惧 3: 高兴 4: 中性 5: 其他 6: 悲伤 7: 惊讶 8: 未知 ''' from funasr import AutoModel model = AutoModel(model="iic/emotion2vec_base_finetuned") # 可选:iic/emotion2vec_plus_seed, iic/emotion2vec_plus_base, iic/emotion2vec_plus_large 和 iic/emotion2vec_base_finetuned wav_file = f"{model.model_path}/example/test.wav" rec_result = model.generate(wav_file, output_dir="./outputs", granularity="utterance", extract_embedding=False) print(rec_result)

模型将自动下载。

FunASR 支持 wav.scp(kaldi 风格)的文件列表输入:

wav_name1 wav_path1.wav
wav_name2 wav_path2.wav
...

更多详情请参考 FunASR

emotion2vec:通用语音情感表征模型

指南

emotion2vec 是首个通用语音情感表征模型。通过自监督预训练,emotion2vec 具备跨任务、跨语言、跨场景提取情感表征的能力。

性能

IEMOCAP 上的性能

emotion2vec 仅使用线性层就在主流的 IEMOCAP 数据集上取得了最先进的结果。更多详情请参考论文。

其他语言上的性能

与最先进的 SSL 模型相比,emotion2vec 在多种语言(普通话、法语、德语、意大利语等)上取得了最先进的结果。更多详情请参考论文。

其他语音情感任务上的性能

更多详情请参考论文。

可视化

IEMOCAP数据集上学习特征的UMAP可视化。<span style="color:red;">红色</span><span style="color:blue;">蓝色</span>调分别表示低唤起和高唤起的情感类别。更多详细信息请参阅论文。

提取特征

下载提取的特征

我们提供了流行情感数据集IEMOCAP的提取特征。这些特征从emotion2vec的最后一层提取。特征以.npy格式存储,提取特征的采样率为50Hz。句级特征通过平均帧级特征计算得出。

所有wav文件都从原始数据集中提取,用于各种下游任务。如果想要使用标准的5531个句子进行4种情感分类的训练,请参考iemocap_downstream文件夹。

从您的数据集提取特征

从源代码安装

最低环境要求为python>=3.8torch>=1.13。我们的测试环境为python=3.8torch=2.01

  1. 克隆仓库。
pip install fairseq git clone https://github.com/ddlBoJack/emotion2vec.git
  1. 从以下位置下载emotion2vec检查点:
  1. 修改并运行scripts/extract_features.sh

从modelscope安装(推荐)

  1. 安装modelscope和funasr
pip install -U funasr modelscope
  1. 运行代码。
''' 使用情感表示模型 rec_result只包含{'feats'} granularity="utterance":{'feats': [*768]} granularity="frame":{feats: [T*768]} ''' from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks inference_pipeline = pipeline( task=Tasks.emotion_recognition, model="iic/emotion2vec_base") rec_result = inference_pipeline('https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav', output_dir="./outputs", granularity="utterance") print(rec_result)

模型将自动下载。

更多详细信息请参考modelscope上的emotion2vec_baseemotion2vec_base_finetuned

从FunASR安装

  1. 安装funasr
pip install -U funasr
  1. 运行代码。
''' 使用情感表示模型 rec_result只包含{'feats'} granularity="utterance":{'feats': [*768]} granularity="frame":{feats: [T*768]} ''' from funasr import AutoModel model = AutoModel(model="iic/emotion2vec_base") wav_file = f"{model.model_path}/example/test.wav" rec_result = model.generate(wav_file, output_dir="./outputs", granularity="utterance") print(rec_result)

模型将自动下载。

FunASR支持wav.scp(kaldi风格)的文件列表输入:

wav_name1 wav_path1.wav
wav_name2 wav_path2.wav
...

更多详细信息请参考FunASR

训练您的下游模型

我们在iemocap_downstream文件夹中提供了IEMOCAP数据集的训练脚本。您可以修改这些脚本以在其他数据集上训练您的下游模型。

引用

如果您觉得我们的emotion2vec代码和论文有用,请引用:

@article{ma2023emotion2vec,
  title={emotion2vec: Self-Supervised Pre-Training for Speech Emotion Representation},
  author={Ma, Ziyang and Zheng, Zhisheng and Ye, Jiaxin and Li, Jinchao and Gao, Zhifu and Zhang, Shiliang and Chen, Xie},
  journal={arXiv preprint arXiv:2312.15185},
  year={2023}
}

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多