data-centric-AI

data-centric-AI

数据工程革新人工智能的新兴领域

Data-centric AI是一个新兴领域,注重通过改善数据质量和数量来提升AI系统性能。这个项目整理了Data-centric AI的全面资源,包含论文、代码和教程等。内容涵盖训练数据开发、推理数据开发和数据维护三大方面,为研究人员和开发者提供了深入了解和应用Data-centric AI概念与技术的宝贵参考。

Data-centric AI机器学习数据工程AI系统数据质量Github开源项目

Awesome-Data-Centric-AI

Awesome

A curated, but incomplete, list of data-centric AI resources. It should be noted that it is unfeasible to encompass every paper. Thus, we prefer to selectively choose papers that present a range of distinct ideas. We welcome contributions to further enrich and refine this list.

:loudspeaker: News: Please check out our open-sourced Large Time Series Model (LTSM)!

If you want to contribute to this list, please feel free to send a pull request. Also, you can contact daochen.zha@rice.edu.

Want to discuss with others who are also interested in data-centric AI? There are three options:

  • Join our Slack channel
  • Join our QQ group (183116457). Password: datacentric
  • Join the WeChat group below (if the QR code is expired, please add WeChat ID: zdcwhu and add a note indicating that you want to join the Data-centric AI group)!
<img width="250" src="./imgs/group.jpeg" alt="group" />

What is Data-centric AI?

Data-centric AI is an emerging field that focuses on engineering data to improve AI systems with enhanced data quality and quantity.

Data-centric AI vs. Model-centric AI

<img width="500" src="./imgs/data-centric.png" alt="data-centric" />

In the conventional model-centric AI lifecycle, researchers and developers primarily focus on identifying more effective models to improve AI performance while keeping the data largely unchanged. However, this model-centric paradigm overlooks the potential quality issues and undesirable flaws of data, such as missing values, incorrect labels, and anomalies. Complementing the existing efforts in model advancement, data-centric AI emphasizes the systematic engineering of data to build AI systems, shifting our focus from model to data.

It is important to note that "data-centric" differs fundamentally from "data-driven", as the latter only emphasizes the use of data to guide AI development, which typically still centers on developing models rather than engineering data.

Why Data-centric AI?

<img width="800" src="./imgs/motivation.png" alt="motivation" />

Two motivating examples of GPT models highlight the central role of data in AI.

  • On the left, large and high-quality training data are the driving force of recent successes of GPT models, while model architectures remain similar, except for more model weights.
  • On the right, when the model becomes sufficiently powerful, we only need to engineer prompts (inference data) to accomplish our objectives, with the model being fixed.

Another example is Segment Anything, a foundation model for computer vision. The core of training Segment Anything lies in the large amount of annotated data, containing more than 1 billion masks, which is 400 times larger than existing segmentation datasets.

What is the Data-centric AI Framework?

<img width="800" src="./imgs/framework.png" alt="framework" />

Data-centric AI framework consists of three goals: training data development, inference data development, and data maintenance, where each goal is associated with several sub-goals.

  • The goal of training data development is to collect and produce rich and high-quality training data to support the training of machine learning models.
  • The objective of inference data development is to create novel evaluation sets that can provide more granular insights into the model or trigger a specific capability of the model with engineered data inputs.
  • The purpose of data maintenance is to ensure the quality and reliability of data in a dynamic environment.

Cite this Work

Zha, Daochen, et al. "Data-centric Artificial Intelligence: A Survey." arXiv preprint arXiv:2303.10158, 2023.

@article{zha2023data-centric-survey, title={Data-centric Artificial Intelligence: A Survey}, author={Zha, Daochen and Bhat, Zaid Pervaiz and Lai, Kwei-Herng and Yang, Fan and Jiang, Zhimeng and Zhong, Shaochen and Hu, Xia}, journal={arXiv preprint arXiv:2303.10158}, year={2023} }

Zha, Daochen, et al. "Data-centric AI: Perspectives and Challenges." SDM, 2023.

@inproceedings{zha2023data-centric-perspectives, title={Data-centric AI: Perspectives and Challenges}, author={Zha, Daochen and Bhat, Zaid Pervaiz and Lai, Kwei-Herng and Yang, Fan and Hu, Xia}, booktitle={SDM}, year={2023} }

Table of Contents

Training Data Development

<img width="800" src="./imgs/training-data-development.png" alt="training-data-development" />

Data Collection

  • Revisiting time series outlier detection: Definitions and benchmarks, NeurIPS 2021 [Paper] [Code]
  • Dataset discovery in data lakes, ICDE 2020 [Paper]
  • Aurum: A data discovery system, ICDE 2018 [Paper] [Code]
  • Table union search on open data, VLDB 2018 [Paper]
  • Data Integration: The Current Status and the Way Forward, IEEE Computer Society Technical Committee on Data Engineering 2018 [Paper]
  • To join or not to join? thinking twice about joins before feature selection, SIGMOD 2016 [Paper]
  • Data curation at scale: the data tamer system, CIDR 2013 [Paper]
  • Data integration: A theoretical perspective, PODS 2002 [Paper]

Data Labeling

  • Segment Anything [Paper] [code]
  • Active Ensemble Learning for Knowledge Graph Error Detection, WSDM 2023 [Paper]
  • Active-Learning-as-a-Service: An Efficient MLOps System for Data-Centric AI, NeurIPS 2022 Workshop on Human in the Loop Learning [paper] [code]
  • Training language models to follow instructions with human feedback, NeurIPS 2022 [Paper]
  • Interactive Weak Supervision: Learning Useful Heuristics for Data Labeling, ICLR 2021 [Paper] [Code]
  • A survey of deep active learning, ACM Computing Surveys 2021 [Paper]
  • Adaptive rule discovery for labeling text data, SIGMOD 2021 [Paper]
  • Cut out the annotator, keep the cutout: better segmentation with weak supervision, ICLR 2021 [Paper]
  • Meta-AAD: Active anomaly detection with deep reinforcement learning, ICDM 2020 [Paper] [Code]
  • Snorkel: Rapid training data creation with weak supervision, VLDB 2020 [Paper] [Code]
  • Graph-based semi-supervised learning: A review, Neurocomputing 2020 [Paper]
  • Annotator rationales for labeling tasks in crowdsourcing, JAIR 2020 [Paper]
  • Rethinking pre-training and self-training, NeurIPS 2020 [Paper]
  • Multi-label dataless text classification with topic modeling, KIS 2019 [Paper]
  • Data programming: Creating large training sets, quickly, NeurIPS 2016 [Paper]
  • Semi-supervised consensus labeling for crowdsourcing, SIGIR 2011 [Paper]
  • Vox Populi: Collecting High-Quality Labels from a Crowd, COLT 2009 [Paper]
  • Democratic co-learning, ICTAI 2004 [Paper]
  • Active learning with statistical models, JAIR 1996 [Paper]

Data Preparation

  • DataFix: Adversarial Learning for Feature Shift Detection and Correction, NeurIPS 2023 [Paper] [Code]
  • OpenGSL: A Comprehensive Benchmark for Graph Structure Learning, arXiv 2023 [Paper] [Code]
  • TSFEL: Time series feature extraction library, SoftwareX 2020 [Paper] [Code]
  • Alphaclean: Automatic generation of data cleaning pipelines, arXiv 2019 [Paper] [Code]
  • Introduction to Scikit-learn, Book 2019 [Paper] [Code]
  • Feature extraction: a survey of the types, techniques, applications, ICSC 2019 [Paper]
  • Feature engineering for predictive modeling using reinforcement learning, AAAI 2018 [Paper]
  • Time series classification from scratch with deep neural networks: A strong baseline, IIJCNN 2017 [Paper]
  • Missing data imputation: focusing on single imputation, ATM 2016 [Paper]
  • Estimating the number and sizes of fuzzy-duplicate clusters, CIKM 2014 [Paper]
  • Data normalization and standardization: a technical report, MLTR 2014 [Paper]
  • CrowdER: crowdsourcing entity resolution, VLDB 2012 [Paper]
  • Imputation of Missing Data Using Machine Learning Techniques, KDD 1996

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多