ML-Papers-Explained

ML-Papers-Explained

机器学习论文关键概念解析与发展历程

ML-Papers-Explained项目提供机器学习领域重要论文的详细解释。涵盖Transformer到GPT-4等多个里程碑语言模型,剖析论文核心思想、创新点和应用。项目帮助理解技术概念,展示机器学习发展历程,是跟踪AI进展的重要资源。

语言模型自然语言处理深度学习TransformerGPTGithub开源项目

ML Papers Explained

Explanations to key concepts in ML

Language Models

PaperDateDescription
TransformerJune 2017An Encoder Decoder model, that introduced multihead attention mechanism for language translation task.
ElmoFebruary 2018Deep contextualized word representations that captures both intricate aspects of word usage and contextual variations across language contexts.
Marian MTApril 2018A Neural Machine Translation framework written entirely in C++ with minimal dependencies, designed for high training and translation speed.
GPTJune 2018A Decoder only transformer which is autoregressively pretrained and then finetuned for specific downstream tasks using task-aware input transformations.
BERTOctober 2018Introduced pre-training for Encoder Transformers. Uses unified architecture across different tasks.
Transformer XLJanuary 2019Extends the original Transformer model to handle longer sequences of text by introducing recurrence into the self-attention mechanism.
XLMJanuary 2019Proposes two methods to learn cross-lingual language models (XLMs): one unsupervised that only relies on monolingual data, and one supervised that leverages parallel data with a new cross-lingual language model objective.
GPT 2February 2019Demonstrates that language models begin to learn various language processing tasks without any explicit supervision.
Sparse TransformerApril 2019Introduced sparse factorizations of the attention matrix to reduce the time and memory consumption to O(n√ n) in terms of sequence lengths.
UniLMMay 2019Utilizes a shared Transformer network and specific self-attention masks to excel in both language understanding and generation tasks.
XLNetJune 2019Extension of the Transformer-XL, pre-trained using a new method that combines ideas from AR and AE objectives.
RoBERTaJuly 2019Built upon BERT, by carefully optimizing hyperparameters and training data size to improve performance on various language tasks .
Sentence BERTAugust 2019A modification of BERT that uses siamese and triplet network structures to derive sentence embeddings that can be compared using cosine-similarity.
CTRLSeptember 2019A 1.63B language model that can generate text conditioned on control codes that govern style, content, and task-specific behavior, allowing for more explicit control over text generation.
Tiny BERTSeptember 2019Uses attention transfer, and task specific distillation for distilling BERT.
ALBERTSeptember 2019Presents certain parameter reduction techniques to lower memory consumption and increase the training speed of BERT.
Distil BERTOctober 2019Distills BERT on very large batches leveraging gradient accumulation, using dynamic masking and without the next sentence prediction objective.
T5October 2019A unified encoder-decoder framework that converts all text-based language problems into a text-to-text format.
BARTOctober 2019An Encoder-Decoder pretrained to reconstruct the original text from corrupted versions of it.
XLM-RobertaNovember 2019A multilingual masked language model pre-trained on text in 100 languages, shows that pretraining multilingual language models at scale leads to significant performance gains for a wide range of crosslingual transfer tasks.
XLM-RobertaNovember 2019A multilingual masked language model pre-trained on text in 100 languages, shows that pretraining multilingual language models at scale leads to significant performance gains for a wide range of crosslingual transfer tasks.
PegasusDecember 2019A self-supervised pre-training objective for abstractive text summarization, proposes removing/masking important sentences from an input document and generating them together as one output sequence.
ReformerJanuary 2020Improves the efficiency of Transformers by replacing dot-product attention with locality-sensitive hashing (O(Llog L) complexity), using reversible residual layers to store activations only once, and splitting feed-forward layer activations into chunks, allowing it to perform on par with Transformer models while being much more memory-efficient and faster on long sequences.
mBARTJanuary 2020A multilingual sequence-to-sequence denoising auto-encoder that pre-trains a complete autoregressive model on large-scale monolingual corpora across many languages using the BART objective, achieving significant performance gains in machine translation tasks.
UniLMv2February 2020Utilizes a pseudo-masked language model (PMLM) for both autoencoding and partially autoregressive language modeling tasks,significantly advancing the capabilities of language models in diverse NLP tasks.
ELECTRAMarch 2020Proposes a sample-efficient pre-training task called replaced token detection, which corrupts input by replacing some tokens with plausible alternatives and trains a discriminative model to predict whether each token was replaced or no.
FastBERTApril 2020A speed-tunable encoder with adaptive inference time having branches at each transformer output to enable early outputs.
MobileBERTApril 2020Compressed and faster version of the BERT, featuring bottleneck structures, optimized attention mechanisms, and knowledge transfer.
LongformerApril 2020Introduces a linearly scalable attention mechanism, allowing handling texts of exteded length.
GPT 3May 2020Demonstrates that scaling up language models greatly improves task-agnostic, few-shot performance.
DeBERTaJune 2020Enhances BERT and RoBERTa through disentangled attention mechanisms, an enhanced mask decoder, and virtual adversarial training.
DeBERTa v2June 2020Enhanced version of the DeBERTa featuring a new vocabulary, nGiE integration, optimized attention mechanisms, additional model sizes, and improved tokenization.
T5 v1.1July 2020An enhanced version of the original T5 model, featuring improvements such as GEGLU activation, no dropout in pre-training, exclusive pre-training on C4, no parameter sharing between embedding and classifier layers.
mT5October 2020A multilingual variant of T5 based on T5 v1.1, pre-trained on a new Common Crawl-based dataset covering 101 languages (mC4).
CodexJuly 2021A GPT language model finetuned on publicly available code from GitHub.
FLANSeptember 2021An instruction-tuned language model developed through finetuning on various NLP datasets described by natural language instructions.
T0October 2021A fine tuned encoder-decoder model on a multitask mixture covering a wide variety of tasks, attaining strong zero-shot performance on several standard datasets.
DeBERTa V3November 2021Enhances the DeBERTa architecture by introducing replaced token detection (RTD) instead of mask language modeling (MLM), along with a novel gradient-disentangled embedding sharing method, exhibiting superior performance across various natural language understanding tasks.
WebGPTDecember 2021A fine-tuned GPT-3 model utilizing text-based web browsing, trained via imitation learning and human feedback, enhancing its ability to answer long-form questions with factual accuracy.
GopherDecember 2021Provides a comprehensive analysis of the performance of various Transformer models across different scales upto 280B on 152 tasks.
LaMDAJanuary 2022Transformer based models specialized for dialog, which are pre-trained on public dialog data and web text.
Instruct GPTMarch 2022Fine-tuned GPT using supervised learning (instruction tuning) and reinforcement learning from human feedback to align with user intent.
CodeGenMarch 2022An LLM trained for program synthesis using input-output examples and natural language descriptions.
ChinchillaMarch 2022Investigated the optimal model size and number of tokens for training a transformer LLM within a given compute budget (Scaling Laws).
PaLMApril 2022A 540-B parameter, densely activated, Transformer, trained using Pathways, (ML system that enables highly efficient training across multiple TPU Pods).
GPT-NeoX-20BApril 2022An autoregressive LLM trained on the Pile, and the largest dense model that had publicly available weights at the time of submission.
OPTMay 2022A suite of decoder-only pre-trained transformers with parameter ranges from 125M to 175B. OPT-175B being comparable to GPT-3.
Flan T5, Flan PaLMOctober 2022Explores instruction fine tuning with a particular focus on scaling the number of tasks, scaling the model size, and fine tuning on chain-of-thought data.
BLOOMNovember 2022A 176B-parameter open-access decoder-only transformer, collaboratively developed by hundreds of researchers, aiming to democratize LLM technology.
BLOOMZ, mT0November 2022Applies Multitask prompted fine tuning to the pretrained multilingual models on English tasks with English prompts to attain task generalization to non-English languages that appear only in the pretraining corpus.
GalacticaNovember 2022An LLM trained on scientific data thus specializing in scientific knowledge.
ChatGPTNovember 2022An interactive model designed to engage in conversations, built on top of GPT 3.5.
Self InstructDecember 2022A framework for improving the instruction-following capabilities of pretrained language models by bootstrapping off their own generations.
LLaMAFebruary 2023A collection of foundation LLMs by Meta ranging from 7B to 65B parameters, trained using publicly available datasets exclusively.
ToolformerFebruary 2023An LLM trained to decide which APIs to call, when to call them, what arguments to pass, and how to best incorporate the results into future token prediction.
AlpacaMarch 2023A fine-tuned LLaMA 7B model, trained on instruction-following demonstrations generated in the style of self-instruct using text-davinci-003.
GPT 4March 2023A multimodal transformer model pre-trained to predict the next token in a document, which can accept image and text inputs and produce text outputs.
VicunaMarch 2023A 13B LLaMA chatbot fine tuned on user-shared conversations collected from ShareGPT, capable of generating more detailed and well-structured answers compared to Alpaca.
BloombergGPTMarch 2023A 50B language model train on general purpose and domain specific data to support a wide range of tasks within the financial industry.

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多