gitops-playground

gitops-playground

GitOps 运维栈助力 Kubernetes 集群管理实践

gitops-playground 为 Kubernetes 集群提供完整的 GitOps 运维环境。项目集成了 Argo CD 部署工具、Prometheus 和 Grafana 监控系统、Vault 和 External Secrets Operator 密钥管理工具,以及 Jenkins CI/CD 流水线。支持本地集群、公有云和空气隔离环境,便于快速搭建 GitOps 环境,体验现代化的集群运维方案。

GitOpsKubernetesArgo CDJenkinsPrometheusGithub开源项目

gitops-playground

Creates a complete GitOps-based operational stack on your Kubernetes clusters:

The gitops-playground is derived from our experiences in consulting, operating the myCloudogu platform and is used in our GitOps trainings for both Flux and ArgoCD.

Playground features

TL;DR

You can try the GitOps Playground on a local Kubernetes cluster by running a single command:

bash <(curl -s \ https://raw.githubusercontent.com/cloudogu/gitops-playground/main/scripts/init-cluster.sh) \ && docker run --rm -t --pull=always -u $(id -u) \ -v ~/.config/k3d/kubeconfig-gitops-playground.yaml:/home/.kube/config \ --net=host \ ghcr.io/cloudogu/gitops-playground --yes --argocd --ingress-nginx --base-url=http://localhost # If you want to try all features, you might want to add these params: --mail --monitoring --vault=dev

Note that on some linux distros like debian do not support subdomains of localhost. There you might have to use --base-url=http://local.gd (see local ingresses).

See the list of applications to get started.

We recommend running this command as an unprivileged user, that is inside the docker group.

Table of contents

<!-- Update with `doctoc --notitle README.md --maxlevel 5`. See https://github.com/thlorenz/doctoc --> <!-- START doctoc generated TOC please keep comment here to allow auto update --> <!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE --> <!-- END doctoc generated TOC please keep comment here to allow auto update -->

What is the GitOps Playground?

The GitOps Playground provides a reproducible environment for setting up a GitOps-Stack. It provides an image for automatically setting up a Kubernetes Cluster including CI-server (Jenkins), source code management (SCM-Manager), Monitoring and Alerting (Prometheus, Grafana, MailHog), Secrets Management (Hashicorp Vault and External Secrets Operator) and of course Argo CD as GitOps operator.

The playground also deploys a number of example applications.

The GitOps Playground lowers the barriers for operating your application on Kubernetes using GitOps. It creates a complete GitOps-based operational stack on your Kubernetes clusters. No need to read lots of books and operator docs, getting familiar with CLIs, ponder about GitOps Repository folder structures and promotion to different environments, etc.
The GitOps Playground is a pre-configured environment to see GitOps in motion, including more advanced use cases like notifications, monitoring and secret management.

In addition to creating an operational stack in production, you can run the playground locally, for learning and developing new features.

We aim to be compatible with various environments, e.g. OpenShift and in an air-gapped network. The support for these is work in progress.

Installation

There a several options for running the GitOps playground

  • on a local k3d cluster Works best on Linux, but is possible on Windows and Mac.
  • on a remote k8s cluster
  • each with the option
    • to use an external Jenkins, SCM-Manager and registry (this can be run in production, e.g. with a Cloudogu Ecosystem) or
    • to run everything inside the cluster (for demo only)

The diagrams below show an overview of the playground's architecture and three scenarios for running the playground. For a simpler overview including all optional features such as monitoring and secrets management see intro at the very top.

Note that running Jenkins inside the cluster is meant for demo purposes only. The third graphic shows our production scenario with the Cloudogu EcoSystem (CES). Here better security and build performance is achieved using ephemeral Jenkins build agents spawned in the cloud.

Overview

Playground on local machineProduction environment with Cloudogu EcoSystem
Playground on local machineA possible production environment

Create Cluster

You can apply the GitOps playground to

  • a local k3d cluster (see docs or script for more details):
    bash <(curl -s \ https://raw.githubusercontent.com/cloudogu/gitops-playground/main/scripts/init-cluster.sh)
  • a remote k8s cluster on Google Kubernetes Engine (e.g. via Terraform, see our docs),
  • or almost any k8s cluster.
    Note that if you want to deploy Jenkins inside the cluster, you either need Docker as container runtime or set Jenkins up to run its build on an agent that provides Docker.

For the local cluster, you can avoid hitting DockerHub's rate limiting by using a mirror via the --docker-io-registry-mirror parameter.

For example:

bash <(curl -s \ https://raw.githubusercontent.com/cloudogu/gitops-playground/main/scripts/init-cluster.sh) --docker-io-registry-mirror https://mirror.gcr.io

This parameter is passed on the containerd used by k3d.

In addition, the Jobs run by Jenkins are using the host's Docker daemon.
To avoid rate limits there, you might have to configure a mirror there as well. This can be done in the /etc/docker/daemon.json or in the config of Docker Desktop.

For example:

{ "registry-mirrors": ["https://mirror.gcr.io"] }

Apply playground

You can apply the playground to your cluster using our container image ghcr.io/cloudogu/gitops-playground.
On success, the container prints a little intro on how to get started with the GitOps playground.

There are several options for running the container:

  • For local k3d cluster, we recommend running the image as a local container via docker
  • For remote clusters (e.g. on GKE) you can run the image inside a pod of the target cluster via kubectl.

All options offer the same parameters, see below.

Apply via Docker (local cluster)

When connecting to k3d it is easiest to apply the playground via a local container in the host network and pass k3d's kubeconfig.

CLUSTER_NAME=gitops-playground docker pull ghcr.io/cloudogu/gitops-playground docker run --rm -t -u $(id -u) \ -v ~/.config/k3d/kubeconfig-${CLUSTER_NAME}.yaml:/home/.kube/config \ --net=host \ ghcr.io/cloudogu/gitops-playground # additional parameters go here

Note:

  • docker pull in advance makes sure you have the newest image, even if you ran this command before.
    Of course, you could also specify a specific version of the image.
  • Using the host network makes it possible to determine localhost and to use k3d's kubeconfig without altering, as it access the API server via a port bound to localhost.
  • We run as the local user in order to avoid file permission issues with the kubeconfig-${CLUSTER_NAME}.yaml.
  • If you experience issues and want to access the full log files, use the following command while the container is running:
docker exec -it \ $(docker ps -q --filter ancestor=ghcr.io/cloudogu/gitops-playground) \ bash -c -- 'tail -f -n +1 /tmp/playground-log-*'

Apply via kubectl (remote cluster)

For remote clusters it is easiest to apply the playground via kubectl. You can find info on how to install kubectl here.

# Create a temporary ServiceAccount and authorize via RBAC. # This is needed to install CRDs, etc. kubectl create serviceaccount gitops-playground-job-executer -n default kubectl create clusterrolebinding gitops-playground-job-executer \ --clusterrole=cluster-admin \ --serviceaccount=default:gitops-playground-job-executer # Then start apply the playground with the following command: # To access services on remote clusters, add either --remote or --ingress-nginx --base-url=$yourdomain kubectl run gitops-playground -i --tty --restart=Never \ --overrides='{ "spec": { "serviceAccount": "gitops-playground-job-executer" } }' \ --image ghcr.io/cloudogu/gitops-playground \ -- --yes --argocd # additional parameters go here. # If everything succeeded, remove the objects kubectl delete clusterrolebinding/gitops-playground-job-executer \ sa/gitops-playground-job-executer pods/gitops-playground -n default

In general docker run should work here as well. But GKE, for example, uses gcloud and python in their kubeconfig. Running inside the cluster avoids these kinds of issues.

Additional parameters

The following describes more parameters and use cases.

You can get a full list of all options like so:

docker run -t --rm ghcr.io/cloudogu/gitops-playground --help
Configuration file

You can also use a configuration file to specify the parameters (--config-file or --config-map). That file must be a YAML file.

Note that the config file is not yet a complete replacement for CLI parameters.

You can use --output-config-file to output the current config as set by defaults and CLI parameters.

In addition, For easier validation and auto-completion, we provide a schema file.

For example in Jetbrains IntelliJ IDEA, you can use the schema for autocompletion and validation when you put the following at the beginning of your config file:

# $schema: https://raw.githubusercontent.com/cloudogu/gitops-playground/main/docs/configuration.schema.json

If you work with an older version, you can use a specific git commit ID instead of main in the schema URL.

Then use the context assistant to enable coding assistance or fill in all available properties. See here for the full manual.

example of a config file inside Jetbrains IntelliJ IDEA

Apply via Docker
docker run --rm -t --pull=always -u $(id -u) \ -v ~/.config/k3d/kubeconfig-gitops-playground.yaml:/home/.kube/config \ -v $(pwd)/gitops-playground.yaml:/config/gitops-playground.yaml \ --net=host \ ghcr.io/cloudogu/gitops-playground --yes --argocd --config-file=/config/gitops-playground.yaml
Apply via kubectl

Create the serviceaccount and clusterrolebinding

$ cat config.yaml # for example features: monitoring: active: true # Convention: # Find the ConfigMap inside the current namespace for the config map # From the config map, pick the key "config.yaml" kubectl create configmap gitops-config --from-file=config.yaml kubectl run gitops-playground -i --tty --restart=Never \ --overrides='{ "spec": { "serviceAccount": "gitops-playground-job-executer" } }' \ --image ghcr.io/cloudogu/gitops-playground \ -- --yes --argocd --config-map=gitops-config

Afterwards, you might want to do a clean up. In addition, you might want to delete the config-map as well.

kubectl delete cm gitops-config
Deploy Ingress Controller

In the default installation the GitOps-Playground comes without an Ingress-Controller.

We use Nginx as default Ingress-Controller. It can be enabled via the configfile or parameter --ingress-nginx.

In order to make use of the ingress controller, it is recommended to use it in conjunction with --base-url, which will create Ingress objects for all components of the GitOps playground.

The ingress controller is based on the helm chart ingress-nginx.

Additional parameters from this chart's values.yaml file can be added to the installation through the gitops-playground configuration file.

Example:

features: ingressNginx: active: true helm: values: controller: replicaCount: 4

In this Example we override the default controller.replicaCount (GOP's default is 2).

This config file is merged with precedence over the defaults set by

Deploy Ingresses

It is possible to deploy Ingress objects for all components. You can either

  • Set a common base url (--base-url=https://example.com) or
  • individual URLS:
--argocd-url https://argocd.example.com 
--grafana-url

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多