gitops-playground

gitops-playground

GitOps 运维栈助力 Kubernetes 集群管理实践

gitops-playground 为 Kubernetes 集群提供完整的 GitOps 运维环境。项目集成了 Argo CD 部署工具、Prometheus 和 Grafana 监控系统、Vault 和 External Secrets Operator 密钥管理工具,以及 Jenkins CI/CD 流水线。支持本地集群、公有云和空气隔离环境,便于快速搭建 GitOps 环境,体验现代化的集群运维方案。

GitOpsKubernetesArgo CDJenkinsPrometheusGithub开源项目

gitops-playground

Creates a complete GitOps-based operational stack on your Kubernetes clusters:

The gitops-playground is derived from our experiences in consulting, operating the myCloudogu platform and is used in our GitOps trainings for both Flux and ArgoCD.

Playground features

TL;DR

You can try the GitOps Playground on a local Kubernetes cluster by running a single command:

bash <(curl -s \ https://raw.githubusercontent.com/cloudogu/gitops-playground/main/scripts/init-cluster.sh) \ && docker run --rm -t --pull=always -u $(id -u) \ -v ~/.config/k3d/kubeconfig-gitops-playground.yaml:/home/.kube/config \ --net=host \ ghcr.io/cloudogu/gitops-playground --yes --argocd --ingress-nginx --base-url=http://localhost # If you want to try all features, you might want to add these params: --mail --monitoring --vault=dev

Note that on some linux distros like debian do not support subdomains of localhost. There you might have to use --base-url=http://local.gd (see local ingresses).

See the list of applications to get started.

We recommend running this command as an unprivileged user, that is inside the docker group.

Table of contents

<!-- Update with `doctoc --notitle README.md --maxlevel 5`. See https://github.com/thlorenz/doctoc --> <!-- START doctoc generated TOC please keep comment here to allow auto update --> <!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE --> <!-- END doctoc generated TOC please keep comment here to allow auto update -->

What is the GitOps Playground?

The GitOps Playground provides a reproducible environment for setting up a GitOps-Stack. It provides an image for automatically setting up a Kubernetes Cluster including CI-server (Jenkins), source code management (SCM-Manager), Monitoring and Alerting (Prometheus, Grafana, MailHog), Secrets Management (Hashicorp Vault and External Secrets Operator) and of course Argo CD as GitOps operator.

The playground also deploys a number of example applications.

The GitOps Playground lowers the barriers for operating your application on Kubernetes using GitOps. It creates a complete GitOps-based operational stack on your Kubernetes clusters. No need to read lots of books and operator docs, getting familiar with CLIs, ponder about GitOps Repository folder structures and promotion to different environments, etc.
The GitOps Playground is a pre-configured environment to see GitOps in motion, including more advanced use cases like notifications, monitoring and secret management.

In addition to creating an operational stack in production, you can run the playground locally, for learning and developing new features.

We aim to be compatible with various environments, e.g. OpenShift and in an air-gapped network. The support for these is work in progress.

Installation

There a several options for running the GitOps playground

  • on a local k3d cluster Works best on Linux, but is possible on Windows and Mac.
  • on a remote k8s cluster
  • each with the option
    • to use an external Jenkins, SCM-Manager and registry (this can be run in production, e.g. with a Cloudogu Ecosystem) or
    • to run everything inside the cluster (for demo only)

The diagrams below show an overview of the playground's architecture and three scenarios for running the playground. For a simpler overview including all optional features such as monitoring and secrets management see intro at the very top.

Note that running Jenkins inside the cluster is meant for demo purposes only. The third graphic shows our production scenario with the Cloudogu EcoSystem (CES). Here better security and build performance is achieved using ephemeral Jenkins build agents spawned in the cloud.

Overview

Playground on local machineProduction environment with Cloudogu EcoSystem
Playground on local machineA possible production environment

Create Cluster

You can apply the GitOps playground to

  • a local k3d cluster (see docs or script for more details):
    bash <(curl -s \ https://raw.githubusercontent.com/cloudogu/gitops-playground/main/scripts/init-cluster.sh)
  • a remote k8s cluster on Google Kubernetes Engine (e.g. via Terraform, see our docs),
  • or almost any k8s cluster.
    Note that if you want to deploy Jenkins inside the cluster, you either need Docker as container runtime or set Jenkins up to run its build on an agent that provides Docker.

For the local cluster, you can avoid hitting DockerHub's rate limiting by using a mirror via the --docker-io-registry-mirror parameter.

For example:

bash <(curl -s \ https://raw.githubusercontent.com/cloudogu/gitops-playground/main/scripts/init-cluster.sh) --docker-io-registry-mirror https://mirror.gcr.io

This parameter is passed on the containerd used by k3d.

In addition, the Jobs run by Jenkins are using the host's Docker daemon.
To avoid rate limits there, you might have to configure a mirror there as well. This can be done in the /etc/docker/daemon.json or in the config of Docker Desktop.

For example:

{ "registry-mirrors": ["https://mirror.gcr.io"] }

Apply playground

You can apply the playground to your cluster using our container image ghcr.io/cloudogu/gitops-playground.
On success, the container prints a little intro on how to get started with the GitOps playground.

There are several options for running the container:

  • For local k3d cluster, we recommend running the image as a local container via docker
  • For remote clusters (e.g. on GKE) you can run the image inside a pod of the target cluster via kubectl.

All options offer the same parameters, see below.

Apply via Docker (local cluster)

When connecting to k3d it is easiest to apply the playground via a local container in the host network and pass k3d's kubeconfig.

CLUSTER_NAME=gitops-playground docker pull ghcr.io/cloudogu/gitops-playground docker run --rm -t -u $(id -u) \ -v ~/.config/k3d/kubeconfig-${CLUSTER_NAME}.yaml:/home/.kube/config \ --net=host \ ghcr.io/cloudogu/gitops-playground # additional parameters go here

Note:

  • docker pull in advance makes sure you have the newest image, even if you ran this command before.
    Of course, you could also specify a specific version of the image.
  • Using the host network makes it possible to determine localhost and to use k3d's kubeconfig without altering, as it access the API server via a port bound to localhost.
  • We run as the local user in order to avoid file permission issues with the kubeconfig-${CLUSTER_NAME}.yaml.
  • If you experience issues and want to access the full log files, use the following command while the container is running:
docker exec -it \ $(docker ps -q --filter ancestor=ghcr.io/cloudogu/gitops-playground) \ bash -c -- 'tail -f -n +1 /tmp/playground-log-*'

Apply via kubectl (remote cluster)

For remote clusters it is easiest to apply the playground via kubectl. You can find info on how to install kubectl here.

# Create a temporary ServiceAccount and authorize via RBAC. # This is needed to install CRDs, etc. kubectl create serviceaccount gitops-playground-job-executer -n default kubectl create clusterrolebinding gitops-playground-job-executer \ --clusterrole=cluster-admin \ --serviceaccount=default:gitops-playground-job-executer # Then start apply the playground with the following command: # To access services on remote clusters, add either --remote or --ingress-nginx --base-url=$yourdomain kubectl run gitops-playground -i --tty --restart=Never \ --overrides='{ "spec": { "serviceAccount": "gitops-playground-job-executer" } }' \ --image ghcr.io/cloudogu/gitops-playground \ -- --yes --argocd # additional parameters go here. # If everything succeeded, remove the objects kubectl delete clusterrolebinding/gitops-playground-job-executer \ sa/gitops-playground-job-executer pods/gitops-playground -n default

In general docker run should work here as well. But GKE, for example, uses gcloud and python in their kubeconfig. Running inside the cluster avoids these kinds of issues.

Additional parameters

The following describes more parameters and use cases.

You can get a full list of all options like so:

docker run -t --rm ghcr.io/cloudogu/gitops-playground --help
Configuration file

You can also use a configuration file to specify the parameters (--config-file or --config-map). That file must be a YAML file.

Note that the config file is not yet a complete replacement for CLI parameters.

You can use --output-config-file to output the current config as set by defaults and CLI parameters.

In addition, For easier validation and auto-completion, we provide a schema file.

For example in Jetbrains IntelliJ IDEA, you can use the schema for autocompletion and validation when you put the following at the beginning of your config file:

# $schema: https://raw.githubusercontent.com/cloudogu/gitops-playground/main/docs/configuration.schema.json

If you work with an older version, you can use a specific git commit ID instead of main in the schema URL.

Then use the context assistant to enable coding assistance or fill in all available properties. See here for the full manual.

example of a config file inside Jetbrains IntelliJ IDEA

Apply via Docker
docker run --rm -t --pull=always -u $(id -u) \ -v ~/.config/k3d/kubeconfig-gitops-playground.yaml:/home/.kube/config \ -v $(pwd)/gitops-playground.yaml:/config/gitops-playground.yaml \ --net=host \ ghcr.io/cloudogu/gitops-playground --yes --argocd --config-file=/config/gitops-playground.yaml
Apply via kubectl

Create the serviceaccount and clusterrolebinding

$ cat config.yaml # for example features: monitoring: active: true # Convention: # Find the ConfigMap inside the current namespace for the config map # From the config map, pick the key "config.yaml" kubectl create configmap gitops-config --from-file=config.yaml kubectl run gitops-playground -i --tty --restart=Never \ --overrides='{ "spec": { "serviceAccount": "gitops-playground-job-executer" } }' \ --image ghcr.io/cloudogu/gitops-playground \ -- --yes --argocd --config-map=gitops-config

Afterwards, you might want to do a clean up. In addition, you might want to delete the config-map as well.

kubectl delete cm gitops-config
Deploy Ingress Controller

In the default installation the GitOps-Playground comes without an Ingress-Controller.

We use Nginx as default Ingress-Controller. It can be enabled via the configfile or parameter --ingress-nginx.

In order to make use of the ingress controller, it is recommended to use it in conjunction with --base-url, which will create Ingress objects for all components of the GitOps playground.

The ingress controller is based on the helm chart ingress-nginx.

Additional parameters from this chart's values.yaml file can be added to the installation through the gitops-playground configuration file.

Example:

features: ingressNginx: active: true helm: values: controller: replicaCount: 4

In this Example we override the default controller.replicaCount (GOP's default is 2).

This config file is merged with precedence over the defaults set by

Deploy Ingresses

It is possible to deploy Ingress objects for all components. You can either

  • Set a common base url (--base-url=https://example.com) or
  • individual URLS:
--argocd-url https://argocd.example.com 
--grafana-url

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成热门AI工具AI图像AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多