cleanlab

cleanlab

开源工具自动检测和优化机器学习数据集

cleanlab是一款开源的数据中心AI工具包,能够自动检测机器学习数据集中的标签错误、异常值和重复项等问题。该工具适用于图像、文本和表格等各类数据,并支持所有机器学习模型。除了发现数据问题,cleanlab还可以训练更稳健的模型,评估数据质量。基于可靠的理论基础,cleanlab运行高效,操作简便,是优化数据质量和提升模型性能的实用工具。

cleanlab机器学习数据清理标签错误检测数据中心AIGithub开源项目
<p align="center"> <img src="https://raw.githubusercontent.com/cleanlab/assets/master/cleanlab/cleanlab_logo_open_source.png" width=60% height=60%> </p> <div align="center"> <a href="https://pypi.org/pypi/cleanlab/" target="_blank"><img src="https://img.shields.io/pypi/v/cleanlab.svg" alt="pypi_versions"></a> <a href="https://pypi.org/pypi/cleanlab/" target="_blank"><img src="https://img.shields.io/badge/python-3.8%2B-blue" alt="py_versions"></a> <a href="https://app.codecov.io/gh/cleanlab/cleanlab" target="_blank"><img src="https://codecov.io/gh/cleanlab/cleanlab/branch/master/graph/badge.svg" alt="coverage"></a> <a href="https://github.com/cleanlab/cleanlab/stargazers/" target="_blank"><img src="https://img.shields.io/github/stars/cleanlab/cleanlab?style=social&maxAge=2592000" alt="Github Stars"></a> <a href="https://cleanlab.ai/slack" target="_blank"><img src="https://img.shields.io/static/v1?logo=slack&style=flat&color=white&label=slack&message=join" alt="Slack Community"></a> <a href="https://twitter.com/CleanlabAI" target="_blank"><img src="https://img.shields.io/twitter/follow/CleanlabAI?style=social" alt="Twitter"></a> </div> <h4 align="center"> <p> <a href="https://docs.cleanlab.ai/">Documentation</a> | <a href="https://github.com/cleanlab/examples">Examples</a> | <a href="https://cleanlab.ai/blog/">Blog</a> | <a href="#citation-and-related-publications">Research</a> | <a href="#try-easy-mode-with-cleanlab-studio">Cleanlab Studio</a> | <a href="#join-our-community">Community</a> <p> </h4>

cleanlab helps you clean data and labels by automatically detecting issues in a ML dataset. To facilitate machine learning with messy, real-world data, this data-centric AI package uses your existing models to estimate dataset problems that can be fixed to train even better models.

<p align="center"> <img src="https://raw.githubusercontent.com/cleanlab/assets/master/cleanlab/datalab_issues.png" width=74% height=74%> </p> <p align="center"> Examples of various issues in Cat/Dog dataset <b>automatically detected</b> by cleanlab via this code: </p>
lab = cleanlab.Datalab(data=dataset, label="column_name_for_labels") # Fit any ML model, get its feature_embeddings & pred_probs for your data lab.find_issues(features=feature_embeddings, pred_probs=pred_probs) lab.report()

Try easy mode with Cleanlab Studio

While this open-source package finds data issues, its utility depends on you having: a good existing ML model + an interface to efficiently fix these issues in your dataset. Providing all these pieces, Cleanlab Studio is a Data Curation platform to find and fix problems in any {image, text, tabular} dataset. Cleanlab Studio automatically runs optimized algorithms from this package on top of AutoML & Foundation models fit to your data, and presents detected issues (+ AI-suggested fixes) in an intelligent data correction interface.

Try it for free! Adopting Cleanlab Studio enables users of this package to:

  • Work 100x faster (1 min to analyze your raw data with zero code or ML work; optionally use Python API)
  • Produce better-quality data (10x more types of issues auto detected & corrected via built-in AI)
  • Accomplish more (auto-label data, deploy ML instantly, audit LLM inputs/outputs, moderate content, ...)
  • Monitor incoming data and detect issues in real-time (integrate your data pipeline on an Enterprise plan)
<p align="center"> <img src="https://raw.githubusercontent.com/cleanlab/assets/master/cleanlab/ml-with-cleanlab-studio.png" alt="The modern AI pipeline automated with Cleanlab Studio"> </p>

Run cleanlab open-source

This cleanlab package runs on Python 3.8+ and supports Linux, macOS, as well as Windows.

Practicing data-centric AI can look like this:

  1. Train initial ML model on original dataset.
  2. Utilize this model to diagnose data issues (via cleanlab methods) and improve the dataset.
  3. Train the same model on the improved dataset.
  4. Try various modeling techniques to further improve performance.

Most folks jump from Step 1 → 4, but you may achieve big gains without any change to your modeling code by using cleanlab! Continuously boost performance by iterating Steps 2 → 4 (and try to evaluate with cleaned data).

Use cleanlab with any model and in most ML tasks

All features of cleanlab work with any dataset and any model. Yes, any model: PyTorch, Tensorflow, Keras, JAX, HuggingFace, OpenAI, XGBoost, scikit-learn, etc.

cleanlab is useful across a wide variety of Machine Learning tasks. Specific tasks this data-centric AI package offers dedicated functionality for include:

  1. Binary and multi-class classification
  2. Multi-label classification (e.g. image/document tagging)
  3. Token classification (e.g. entity recognition in text)
  4. Regression (predicting numerical column in a dataset)
  5. Image segmentation (images with per-pixel annotations)
  6. Object detection (images with bounding box annotations)
  7. Classification with data labeled by multiple annotators
  8. Active learning with multiple annotators (suggest which data to label or re-label to improve model most)
  9. Outlier detection (identify atypical data that appears out of distribution)

For other ML tasks, cleanlab can still help you improve your dataset if appropriately applied. See our Example Notebooks and Blog.

So fresh, so cleanlab

Beyond automatically catching all sorts of issues lurking in your data, this data-centric AI package helps you deal with noisy labels and train more robust ML models. Here's an example:

# cleanlab works with **any classifier**. Yup, you can use PyTorch/TensorFlow/OpenAI/XGBoost/etc. cl = cleanlab.classification.CleanLearning(sklearn.YourFavoriteClassifier()) # cleanlab finds data and label issues in **any dataset**... in ONE line of code! label_issues = cl.find_label_issues(data, labels) # cleanlab trains a robust version of your model that works more reliably with noisy data. cl.fit(data, labels) # cleanlab estimates the predictions you would have gotten if you had trained with *no* label issues. cl.predict(test_data) # A universal data-centric AI tool, cleanlab quantifies class-level issues and overall data quality, for any dataset. cleanlab.dataset.health_summary(labels, confident_joint=cl.confident_joint)

cleanlab cleans your data's labels via state-of-the-art confident learning algorithms, published in this paper and blog. See some of the datasets cleaned with cleanlab at labelerrors.com.

cleanlab is:

  1. backed by theory -- with provable guarantees of exact label noise estimation, even with imperfect models.
  2. fast -- code is parallelized and scalable.
  3. easy to use -- one line of code to find mislabeled data, bad annotators, outliers, or train noise-robust models.
  4. general -- works with any dataset (text, image, tabular, audio,...) + any model (PyTorch, OpenAI, XGBoost,...) <br/>

<p align="center"> Examples of incorrect given labels in various image datasets <a href="https://l7.curtisnorthcutt.com/label-errors">found and corrected</a> using cleanlab. While these examples are from image datasets, this also works for text, audio, tabular data. </p>

Citation and related publications

cleanlab is based on peer-reviewed research. Here are relevant papers to cite if you use this package:

<details><summary><a href="https://arxiv.org/abs/1911.00068">Confident Learning (JAIR '21)</a> (<b>click to show bibtex</b>) </summary>
@article{northcutt2021confidentlearning,
    title={Confident Learning: Estimating Uncertainty in Dataset Labels},
    author={Curtis G. Northcutt and Lu Jiang and Isaac L. Chuang},
    journal={Journal of Artificial Intelligence Research (JAIR)},
    volume={70},
    pages={1373--1411},
    year={2021}
}
</details> <details><summary><a href="https://arxiv.org/abs/1705.01936">Rank Pruning (UAI '17)</a> (<b>click to show bibtex</b>) </summary>
@inproceedings{northcutt2017rankpruning,
    author={Northcutt, Curtis G. and Wu, Tailin and Chuang, Isaac L.},
    title={Learning with Confident Examples: Rank Pruning for Robust Classification with Noisy Labels},
    booktitle = {Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence},
    series = {UAI'17},
    year = {2017},
    location = {Sydney, Australia},
    numpages = {10},
    url = {http://auai.org/uai2017/proceedings/papers/35.pdf},
    publisher = {AUAI Press},
}
</details> <details><summary><a href="https://people.csail.mit.edu/jonasmueller/info/LabelQuality_icml.pdf"> Label Quality Scoring (ICML '22)</a> (<b>click to show bibtex</b>) </summary>
@inproceedings{kuan2022labelquality,
    title={Model-agnostic label quality scoring to detect real-world label errors},
    author={Kuan, Johnson and Mueller, Jonas},
    booktitle={ICML DataPerf Workshop},
    year={2022}
}
</details> <details><summary><a href="https://arxiv.org/abs/2207.03061"> Out-of-Distribution Detection (ICML '22)</a> (<b>click to show bibtex</b>) </summary>
@inproceedings{kuan2022ood,
    title={Back to the Basics: Revisiting Out-of-Distribution Detection Baselines},
    author={Kuan, Johnson and Mueller, Jonas},
    booktitle={ICML Workshop on Principles of Distribution Shift},
    year={2022}
}
</details> <details><summary><a href="https://arxiv.org/abs/2210.03920"> Token Classification Label Errors (NeurIPS '22)</a> (<b>click to show bibtex</b>) </summary>
@inproceedings{wang2022tokenerrors,
    title={Detecting label errors in token classification data},
    author={Wang, Wei-Chen and Mueller, Jonas},
    booktitle={NeurIPS Workshop on Interactive Learning for Natural Language Processing (InterNLP)},
    year={2022}
}
</details> <details><summary><a href="https://arxiv.org/abs/2210.06812"> CROWDLAB for Data with Multiple Annotators (NeurIPS '22)</a> (<b>click to show bibtex</b>) </summary>
@inproceedings{goh2022crowdlab,
    title={CROWDLAB: Supervised learning to infer consensus labels and quality scores for data with multiple annotators},
    author={Goh, Hui Wen and Tkachenko, Ulyana and Mueller, Jonas},
    booktitle={NeurIPS Human in the Loop Learning Workshop},
    year={2022}
}
</details> <details><summary><a href="https://arxiv.org/abs/2301.11856"> ActiveLab: Active learning with data re-labeling (ICLR '23)</a> (<b>click to show bibtex</b>) </summary>
@inproceedings{goh2023activelab,
    title={ActiveLab: Active Learning with Re-Labeling by Multiple Annotators},
    author={Goh, Hui Wen and Mueller, Jonas},
    booktitle={ICLR Workshop on Trustworthy ML},
    year={2023}
}
</details> <details><summary><a href="https://arxiv.org/abs/2211.13895"> Incorrect Annotations in Multi-Label Classification (ICLR '23)</a> (<b>click to show bibtex</b>) </summary>
@inproceedings{thyagarajan2023multilabel,
    title={Identifying Incorrect Annotations in Multi-Label Classification Data},
    author={Thyagarajan, Aditya and Snorrason, Elías and Northcutt, Curtis and Mueller, Jonas},
    booktitle={ICLR Workshop on Trustworthy ML},
    year={2023}
}
</details> <details><summary><a href="https://arxiv.org/abs/2305.15696"> Detecting Dataset Drift and Non-IID Sampling (ICML '23)</a> (<b>click to show bibtex</b>) </summary>
@inproceedings{cummings2023drift,
    title={Detecting Dataset Drift and Non-IID Sampling via k-Nearest Neighbors},
    author={Cummings, Jesse and Snorrason, Elías and Mueller, Jonas},
    booktitle={ICML Workshop on Data-centric Machine Learning Research},
    year={2023}
}
</details> <details><summary><a href="https://arxiv.org/abs/2305.16583"> Detecting Errors in Numerical Data (ICML '23)</a> (<b>click to show bibtex</b>) </summary>
@inproceedings{zhou2023errors,
    title={Detecting Errors in Numerical Data via any Regression Model},
    author={Zhou, Hang and Mueller, Jonas and Kumar, Mayank and Wang, Jane-Ling and Lei, Jing},
    booktitle={ICML Workshop on Data-centric Machine Learning Research},
    year={2023}
}
</details> <details><summary><a href="https://arxiv.org/abs/2309.00832"> ObjectLab: Mislabeled Images in Object Detection Data (ICML '23)</a> (<b>click to show bibtex</b>) </summary>
@inproceedings{tkachenko2023objectlab,
    title={ObjectLab: Automated Diagnosis of Mislabeled Images in Object Detection Data},
    author={Tkachenko, Ulyana and Thyagarajan, Aditya and Mueller, Jonas},
    booktitle={ICML Workshop on Data-centric Machine Learning Research},
   

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多