
从零开始训练0.2B参数的中文语言模型,支持Flash Attention加速
项目包含从数据清洗、tokenizer训练、CLM预训练、SFT微调到RLHF优化的详细步骤,代码和模型 已开源,可引用。支持Flash Attention加速,适用于大数据集处理。更多信息及模型权重在huggingface仓库。
Phi2-mini-Chinese 是一个实验性项目,旨在从零开始训练自己的中文小模型。此项目主要适用于研究和实验目的,并开源了代码与模型权重。项目中使用的预训练数据量较少,如果对效果有更高要求,可以参考 ChatLM-mini-Chinese 项目。
此项目具有实验性质,可能会对训练数据、模型结构和文件目录结构等进行大幅度的修改。初始版本的模型可以在代码库中找到对应的 tag v1.0。
该项目提供了 flash attention 2 加速功能,能够提高模型的运行效率。
数据清洗是模型训练的基础步骤。这个项目中所涉及的清洗步骤包括:
关于具体的数据清洗方法,可以参考 ChatLM-mini-Chinese 项目。
Phi2-mini-Chinese 项目使用了字节级(byte level)BPE 分词器,同时也提供字符级(char level)分词器的训练代码。训练好的分词器需要确认是否包含常见的特殊符号,例如 \t、\n 等。如果缺少,通过 add_tokens 函数进行添加。
由于分词器训练过程需要大量的内存:
对于大数据集,建议从数据集中进行采样来减小训练压力。
CLM 模型通过无监督学习方式对大量文本进行预训练。主要使用 Bell 开源的数据集。单个数据样本以一句话表示,过长的陈述可以分割成多个数据样本。在处理百科语料时,建议在每个词条后添加 '[EOS]' 标记。
SFT 主要使用了同样的开源数据集,数据格式如下所示:
text = f"##提问:\n{example['instruction']}\n##回答:\n{example['output'][EOS]"
模型在计算损失时将忽略从标记 "##回答:" 开始以前的部分。确保在句子的最后添加 EOS 标记,以便于模型在生成过程中判断何时结束。
采用 DPO(偏好优化)方法进行改进,优化过程通过构造数据集的三列信息:prompt、chosen 和 rejected 来实现。
用户可通过 huggingface 仓库下载模型权重,并利用 Transformers 库加载模型进行推理。
下面是一个简单的代码示例:
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig import torch device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") tokenizer = AutoTokenizer.from_pretrained('charent/Phi2-Chinese-0.2B') model = AutoModelForCausalLM.from_pretrained('charent/Phi2-Chinese-0.2B').to(device) txt = '感冒了要怎么办?' prompt = f"##提问:\n{txt}\n##回答:\n" # greedy search gen_conf = GenerationConfig( num_beams=1, do_sample=False, max_length=320, max_new_tokens=256, no_repeat_ngram_size=4, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, ) tokend = tokenizer.encode_plus(text=prompt) input_ids, attention_mask = torch.LongTensor([tokend.input_ids]).to(device), \ torch.LongTensor([tokend.attention_mask]).to(device) outputs = model.generate( inputs=input_ids, attention_mask=attention_mask, generation_config=gen_conf, ) outs = tokenizer.decode(outputs[0].cpu().numpy(), clean_up_tokenization_spaces=True, skip_special_tokens=True,) print(outs)
具体代码可以在项目中的 rag_with_langchain.ipynb 文件中找到。
如果该项目对您有所帮助,可以按以下格式进行引用:
@misc{Charent2023, author={Charent Chen}, title={A small Chinese causal language model with 0.2B parameters base on Phi2}, year={2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {https://github.com/charent/Phi2-mini-Chinese}, }
项目开发者不对由于开源模型和代码可能导致的数据安全、舆情风险或模型被误导、滥用产生的风险和责任进行担保。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

