tweetnlp

tweetnlp

社交媒体文本分析的全能NLP工具集

TweetNLP是一个专注于社交媒体分析的Python库,为Twitter等平台提供全面的文本分析功能。该库集成了多项先进的自然语言处理技术,包括情感分析、表情预测、命名实体识别等。TweetNLP还支持主题分类、讽刺检测、仇恨言论识别和情感识别等多种任务,为社交媒体研究和应用开发提供了强大而灵活的工具集。

TweetNLP自然语言处理社交媒体模型数据集Github开源项目

license PyPI version PyPI pyversions PyPI status

TweetNLP

TweetNLP for all the NLP enthusiasts working on Twitter and social media! The python library tweetnlp provides a collection of useful tools to analyze/understand tweets such as sentiment analysis, emoji prediction, and named-entity recognition, powered by state-of-the-art language modeling specialized on social media.

News (December 2022): We presented a TweetNLP demo paper ("TweetNLP: Cutting-Edge Natural Language Processing for Social Media"), at EMNLP 2022. The final version can be found here.

TweetNLP Hugging Face page All the main TweetNLP models can be found here on Hugging Face.

Resources:

  • Quick Tour with Colab Notebook: Open In Colab
  • Play with the TweetNLP Online Demo: link
  • EMNLP 2022 paper: link
  • 2nd Cardiff NLP Summer Workshop Tutorial: Open In Colab
  • 2nd Cardiff NLP Summer Workshop Tutorial (solutions): Open In Colab

Table of Contents:

  1. Load Model & Dataset
  2. Fine-tune Model

Get Started

Install TweetNLP via pip on your console.

pip install tweetnlp

Model & Dataset

In this section, you will learn how to get the models and datasets with tweetnlp. The models follow huggingface model and the datasets are in the format of huggingface datasets. Easy introductions of huggingface models and datasets should be found at huggingface webpage, so please check them if you are new to huggingface.

Tweet Classification

Open In Colab

The classification module consists of six different tasks (Topic Classification, Sentiment Analysis, Irony Detection, Hate Speech Detection, Offensive Language Detection, Emoji Prediction, and Emotion Analysis). In each example, the model is instantiated by tweetnlp.load_model("task-name"), and run the prediction by passing a text or a list of texts as argument to the corresponding function.

  • Topic Classification: The aim of this task is, given a tweet to assign topics related to its content. The task is formed as a supervised multi-label classification problem where each tweet is assigned one or more topics from a total of 19 available topics. The topics were carefully curated based on Twitter trends with the aim to be broad and general and consist of classes such as: arts and culture, music, or sports. Our internally-annotated dataset contains over 10K manually-labeled tweets (check the paper here, or the huggingface dataset page).
import tweetnlp # MULTI-LABEL MODEL model = tweetnlp.load_model('topic_classification') # Or `model = tweetnlp.TopicClassification()` model.topic("Jacob Collier is a Grammy-awarded English artist from London.") # Or `model.predict` >>> {'label': ['celebrity_&_pop_culture', 'music']} # Note: the probability of the multi-label model is the output of sigmoid function on binary prediction whether each topic is positive or negative. model.topic("Jacob Collier is a Grammy-awarded English artist from London.", return_probability=True) >>> {'label': ['celebrity_&_pop_culture', 'music'], 'probability': {'arts_&_culture': 0.037371691316366196, 'business_&_entrepreneurs': 0.010188567452132702, 'celebrity_&_pop_culture': 0.92448890209198, 'diaries_&_daily_life': 0.03425711765885353, 'family': 0.00796138122677803, 'fashion_&_style': 0.020642118528485298, 'film_tv_&_video': 0.08062587678432465, 'fitness_&_health': 0.006343095097690821, 'food_&_dining': 0.0042883665300905704, 'gaming': 0.004327300935983658, 'learning_&_educational': 0.010652057826519012, 'music': 0.8291937112808228, 'news_&_social_concern': 0.24688217043876648, 'other_hobbies': 0.020671198144555092, 'relationships': 0.020371075719594955, 'science_&_technology': 0.0170074962079525, 'sports': 0.014291072264313698, 'travel_&_adventure': 0.010423899628221989, 'youth_&_student_life': 0.008605164475739002}} # SINGLE-LABEL MODEL model = tweetnlp.load_model('topic_classification', multi_label=False) # Or `model = tweetnlp.TopicClassification(multi_label=False)` model.topic("Jacob Collier is a Grammy-awarded English artist from London.") >>> {'label': 'pop_culture'} # NOTE: the probability of the sinlge-label model the softmax over the label. model.topic("Jacob Collier is a Grammy-awarded English artist from London.", return_probability=True) >>> {'label': 'pop_culture', 'probability': {'arts_&_culture': 9.20625461731106e-05, 'business_&_entrepreneurs': 6.916998972883448e-05, 'pop_culture': 0.9995898604393005, 'daily_life': 0.00011083036952186376, 'sports_&_gaming': 8.668467489769682e-05, 'science_&_technology': 5.152115045348182e-05}} # GET DATASET dataset_multi_label, label2id_multi_label = tweetnlp.load_dataset('topic_classification') dataset_single_label, label2id_single_label = tweetnlp.load_dataset('topic_classification', multi_label=False)
  • Sentiment Analysis: The sentiment analysis task integrated in TweetNLP is a simplified version where the goal is to predict the sentiment of a tweet with one of the three following labels: positive, neutral or negative. The base dataset for English is the unified TweetEval version of the Semeval-2017 dataset from the task on Sentiment Analysis in Twitter (check the paper here).
import tweetnlp # ENGLISH MODEL model = tweetnlp.load_model('sentiment') # Or `model = tweetnlp.Sentiment()` model.sentiment("Yes, including Medicare and social security saving👍") # Or `model.predict` >>> {'label': 'positive'} model.sentiment("Yes, including Medicare and social security saving👍", return_probability=True) >>> {'label': 'positive', 'probability': {'negative': 0.004584966693073511, 'neutral': 0.19360853731632233, 'positive': 0.8018065094947815}} # MULTILINGUAL MODEL model = tweetnlp.load_model('sentiment', multilingual=True) # Or `model = tweetnlp.Sentiment(multilingual=True)` model.sentiment("天気が良いとやっぱり気持ち良いなあ✨") >>> {'label': 'positive'} model.sentiment("天気が良いとやっぱり気持ち良いなあ✨", return_probability=True) >>> {'label': 'positive', 'probability': {'negative': 0.028369612991809845, 'neutral': 0.08128828555345535, 'positive': 0.8903420567512512}} # GET DATASET (ENGLISH) dataset, label2id = tweetnlp.load_dataset('sentiment') # GET DATASET (MULTILINGUAL) for l in ['all', 'arabic', 'english', 'french', 'german', 'hindi', 'italian', 'portuguese', 'spanish']: dataset_multilingual, label2id_multilingual = tweetnlp.load_dataset('sentiment', multilingual=True, task_language=l)
  • Irony Detection: This is a binary classification task where given a tweet, the goal is to detect whether it is ironic or not. It is based on the Irony Detection dataset from the SemEval 2018 task (check the paper here).
import tweetnlp # MODEL model = tweetnlp.load_model('irony') # Or `model = tweetnlp.Irony()` model.irony('If you wanna look like a badass, have drama on social media') # Or `model.predict` >>> {'label': 'irony'} model.irony('If you wanna look like a badass, have drama on social media', return_probability=True) >>> {'label': 'irony', 'probability': {'non_irony': 0.08390884101390839, 'irony': 0.9160911440849304}} # GET DATASET dataset, label2id = tweetnlp.load_dataset('irony')
  • Hate Speech Detection: The hate speech detection task consists of detecting whether a tweet is hateful towards a target community. The underlying model is based on a suite of unified hate speech detection datasets (see reference paper).
import tweetnlp # MODEL model = tweetnlp.load_model('hate') # Or `model = tweetnlp.Hate()` model.hate('Whoever just unfollowed me you a bitch') # Or `model.predict` >>> {'label': 'not-hate'} model.hate('Whoever just unfollowed me you a bitch', return_probability=True) >>> {'label': 'non-hate', 'probability': {'non-hate': 0.7263831496238708, 'hate': 0.27361682057380676}} # GET DATASET dataset, label2id = tweetnlp.load_dataset('hate')
  • Offensive Language Identification: This task consists in identifying whether some form of offensive language is present in a tweet. For our benchmark we rely on the SemEval2019 OffensEval dataset (check the paper here).
import tweetnlp # MODEL model = tweetnlp.load_model('offensive') # Or `model = tweetnlp.Offensive()` model.offensive("All two of them taste like ass.") # Or `model.predict` >>> {'label': 'offensive'} model.offensive("All two of them taste like ass.", return_probability=True) >>> {'label': 'offensive', 'probability': {'non-offensive': 0.16420328617095947, 'offensive': 0.8357967734336853}} # GET DATASET dataset, label2id = tweetnlp.load_dataset('offensive')
  • Emoji Prediction: The goal of emoji prediction is to predict the final emoji on a given tweet. The dataset used to fine-tune our models is the TweetEval adaptation from the SemEval 2018 task on Emoji Prediction (check the paper here), including 20 emoji as labels (❤, 😍, 😂, 💕, 🔥, 😊, 😎, ✨, 💙, 😘, 📷, 🇺🇸, ☀, 💜, 😉, 💯, 😁, 🎄, 📸, 😜).
import tweetnlp # MODEL model = tweetnlp.load_model('emoji') # Or `model = tweetnlp.Emoji()` model.emoji('Beautiful sunset last night from the pontoon @TupperLakeNY') # Or `model.predict` >>> {'label': '😊'} model.emoji('Beautiful sunset last night from the pontoon @TupperLakeNY', return_probability=True) >>> {'label': '📷', 'probability': {'❤': 0.13197319209575653, '😍': 0.11246423423290253, '😂': 0.008415069431066513, '💕': 0.04842926934361458, '🔥': 0.014528146013617516, '😊': 0.1509675830602646, '😎': 0.08625403046607971, '✨': 0.01616635173559189, '💙': 0.07396604865789413, '😘': 0.03033279813826084, '📷': 0.16525287926197052, '🇺🇸': 0.020336611196398735, '☀': 0.00799981877207756, '💜': 0.016111424192786217, '😉': 0.012984540313482285, '💯': 0.012557178735733032, '😁': 0.031386848539114, '🎄': 0.006829539313912392, '📸': 0.04188741743564606, '😜': 0.011156936176121235}} # GET DATASET dataset, label2id = tweetnlp.load_dataset('emoji')
  • Emotion Recognition: Given a tweet, this task consists of associating it with its most appropriate emotion. As a reference dataset we use the SemEval 2018 task on Affect in Tweets (check the paper here). The latest multi-label model includes eleven emotion types.
import tweetnlp # MULTI-LABEL MODEL model = tweetnlp.load_model('emotion') # Or `model = tweetnlp.Emotion()` model.emotion('I love swimming for the same reason I love meditating...the feeling of weightlessness.') # Or `model.predict` >>> {'label': 'joy'} # Note: the probability of the multi-label model is the output of sigmoid function on binary prediction whether each topic is positive or negative. model.emotion('I love swimming for the same reason I love meditating...the feeling of weightlessness.', return_probability=True) >>> {'label': 'joy', 'probability': {'anger': 0.00025800734874792397, 'anticipation': 0.0005329723935574293, 'disgust': 0.00026112011983059347, 'fear': 0.00027552215033210814, 'joy': 0.7721399068832397, 'love': 0.1806265264749527, 'optimism': 0.04208092764019966, 'pessimism': 0.00025325192837044597, 'sadness': 0.0006160663324408233, 'surprise': 0.0005619609728455544, 'trust': 0.002393839880824089}} # SINGLE-LABEL MODEL model = tweetnlp.load_model('emotion') # Or `model = tweetnlp.Emotion()` model.emotion('I love swimming for the same reason I love meditating...the feeling of weightlessness.') # Or `model.predict` >>> {'label': 'joy'} # NOTE: the probability of the

编辑推荐精选

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多