tweetnlp

tweetnlp

社交媒体文本分析的全能NLP工具集

TweetNLP是一个专注于社交媒体分析的Python库,为Twitter等平台提供全面的文本分析功能。该库集成了多项先进的自然语言处理技术,包括情感分析、表情预测、命名实体识别等。TweetNLP还支持主题分类、讽刺检测、仇恨言论识别和情感识别等多种任务,为社交媒体研究和应用开发提供了强大而灵活的工具集。

TweetNLP自然语言处理社交媒体模型数据集Github开源项目

license PyPI version PyPI pyversions PyPI status

TweetNLP

TweetNLP for all the NLP enthusiasts working on Twitter and social media! The python library tweetnlp provides a collection of useful tools to analyze/understand tweets such as sentiment analysis, emoji prediction, and named-entity recognition, powered by state-of-the-art language modeling specialized on social media.

News (December 2022): We presented a TweetNLP demo paper ("TweetNLP: Cutting-Edge Natural Language Processing for Social Media"), at EMNLP 2022. The final version can be found here.

TweetNLP Hugging Face page All the main TweetNLP models can be found here on Hugging Face.

Resources:

  • Quick Tour with Colab Notebook: Open In Colab
  • Play with the TweetNLP Online Demo: link
  • EMNLP 2022 paper: link
  • 2nd Cardiff NLP Summer Workshop Tutorial: Open In Colab
  • 2nd Cardiff NLP Summer Workshop Tutorial (solutions): Open In Colab

Table of Contents:

  1. Load Model & Dataset
  2. Fine-tune Model

Get Started

Install TweetNLP via pip on your console.

pip install tweetnlp

Model & Dataset

In this section, you will learn how to get the models and datasets with tweetnlp. The models follow huggingface model and the datasets are in the format of huggingface datasets. Easy introductions of huggingface models and datasets should be found at huggingface webpage, so please check them if you are new to huggingface.

Tweet Classification

Open In Colab

The classification module consists of six different tasks (Topic Classification, Sentiment Analysis, Irony Detection, Hate Speech Detection, Offensive Language Detection, Emoji Prediction, and Emotion Analysis). In each example, the model is instantiated by tweetnlp.load_model("task-name"), and run the prediction by passing a text or a list of texts as argument to the corresponding function.

  • Topic Classification: The aim of this task is, given a tweet to assign topics related to its content. The task is formed as a supervised multi-label classification problem where each tweet is assigned one or more topics from a total of 19 available topics. The topics were carefully curated based on Twitter trends with the aim to be broad and general and consist of classes such as: arts and culture, music, or sports. Our internally-annotated dataset contains over 10K manually-labeled tweets (check the paper here, or the huggingface dataset page).
import tweetnlp # MULTI-LABEL MODEL model = tweetnlp.load_model('topic_classification') # Or `model = tweetnlp.TopicClassification()` model.topic("Jacob Collier is a Grammy-awarded English artist from London.") # Or `model.predict` >>> {'label': ['celebrity_&_pop_culture', 'music']} # Note: the probability of the multi-label model is the output of sigmoid function on binary prediction whether each topic is positive or negative. model.topic("Jacob Collier is a Grammy-awarded English artist from London.", return_probability=True) >>> {'label': ['celebrity_&_pop_culture', 'music'], 'probability': {'arts_&_culture': 0.037371691316366196, 'business_&_entrepreneurs': 0.010188567452132702, 'celebrity_&_pop_culture': 0.92448890209198, 'diaries_&_daily_life': 0.03425711765885353, 'family': 0.00796138122677803, 'fashion_&_style': 0.020642118528485298, 'film_tv_&_video': 0.08062587678432465, 'fitness_&_health': 0.006343095097690821, 'food_&_dining': 0.0042883665300905704, 'gaming': 0.004327300935983658, 'learning_&_educational': 0.010652057826519012, 'music': 0.8291937112808228, 'news_&_social_concern': 0.24688217043876648, 'other_hobbies': 0.020671198144555092, 'relationships': 0.020371075719594955, 'science_&_technology': 0.0170074962079525, 'sports': 0.014291072264313698, 'travel_&_adventure': 0.010423899628221989, 'youth_&_student_life': 0.008605164475739002}} # SINGLE-LABEL MODEL model = tweetnlp.load_model('topic_classification', multi_label=False) # Or `model = tweetnlp.TopicClassification(multi_label=False)` model.topic("Jacob Collier is a Grammy-awarded English artist from London.") >>> {'label': 'pop_culture'} # NOTE: the probability of the sinlge-label model the softmax over the label. model.topic("Jacob Collier is a Grammy-awarded English artist from London.", return_probability=True) >>> {'label': 'pop_culture', 'probability': {'arts_&_culture': 9.20625461731106e-05, 'business_&_entrepreneurs': 6.916998972883448e-05, 'pop_culture': 0.9995898604393005, 'daily_life': 0.00011083036952186376, 'sports_&_gaming': 8.668467489769682e-05, 'science_&_technology': 5.152115045348182e-05}} # GET DATASET dataset_multi_label, label2id_multi_label = tweetnlp.load_dataset('topic_classification') dataset_single_label, label2id_single_label = tweetnlp.load_dataset('topic_classification', multi_label=False)
  • Sentiment Analysis: The sentiment analysis task integrated in TweetNLP is a simplified version where the goal is to predict the sentiment of a tweet with one of the three following labels: positive, neutral or negative. The base dataset for English is the unified TweetEval version of the Semeval-2017 dataset from the task on Sentiment Analysis in Twitter (check the paper here).
import tweetnlp # ENGLISH MODEL model = tweetnlp.load_model('sentiment') # Or `model = tweetnlp.Sentiment()` model.sentiment("Yes, including Medicare and social security saving👍") # Or `model.predict` >>> {'label': 'positive'} model.sentiment("Yes, including Medicare and social security saving👍", return_probability=True) >>> {'label': 'positive', 'probability': {'negative': 0.004584966693073511, 'neutral': 0.19360853731632233, 'positive': 0.8018065094947815}} # MULTILINGUAL MODEL model = tweetnlp.load_model('sentiment', multilingual=True) # Or `model = tweetnlp.Sentiment(multilingual=True)` model.sentiment("天気が良いとやっぱり気持ち良いなあ✨") >>> {'label': 'positive'} model.sentiment("天気が良いとやっぱり気持ち良いなあ✨", return_probability=True) >>> {'label': 'positive', 'probability': {'negative': 0.028369612991809845, 'neutral': 0.08128828555345535, 'positive': 0.8903420567512512}} # GET DATASET (ENGLISH) dataset, label2id = tweetnlp.load_dataset('sentiment') # GET DATASET (MULTILINGUAL) for l in ['all', 'arabic', 'english', 'french', 'german', 'hindi', 'italian', 'portuguese', 'spanish']: dataset_multilingual, label2id_multilingual = tweetnlp.load_dataset('sentiment', multilingual=True, task_language=l)
  • Irony Detection: This is a binary classification task where given a tweet, the goal is to detect whether it is ironic or not. It is based on the Irony Detection dataset from the SemEval 2018 task (check the paper here).
import tweetnlp # MODEL model = tweetnlp.load_model('irony') # Or `model = tweetnlp.Irony()` model.irony('If you wanna look like a badass, have drama on social media') # Or `model.predict` >>> {'label': 'irony'} model.irony('If you wanna look like a badass, have drama on social media', return_probability=True) >>> {'label': 'irony', 'probability': {'non_irony': 0.08390884101390839, 'irony': 0.9160911440849304}} # GET DATASET dataset, label2id = tweetnlp.load_dataset('irony')
  • Hate Speech Detection: The hate speech detection task consists of detecting whether a tweet is hateful towards a target community. The underlying model is based on a suite of unified hate speech detection datasets (see reference paper).
import tweetnlp # MODEL model = tweetnlp.load_model('hate') # Or `model = tweetnlp.Hate()` model.hate('Whoever just unfollowed me you a bitch') # Or `model.predict` >>> {'label': 'not-hate'} model.hate('Whoever just unfollowed me you a bitch', return_probability=True) >>> {'label': 'non-hate', 'probability': {'non-hate': 0.7263831496238708, 'hate': 0.27361682057380676}} # GET DATASET dataset, label2id = tweetnlp.load_dataset('hate')
  • Offensive Language Identification: This task consists in identifying whether some form of offensive language is present in a tweet. For our benchmark we rely on the SemEval2019 OffensEval dataset (check the paper here).
import tweetnlp # MODEL model = tweetnlp.load_model('offensive') # Or `model = tweetnlp.Offensive()` model.offensive("All two of them taste like ass.") # Or `model.predict` >>> {'label': 'offensive'} model.offensive("All two of them taste like ass.", return_probability=True) >>> {'label': 'offensive', 'probability': {'non-offensive': 0.16420328617095947, 'offensive': 0.8357967734336853}} # GET DATASET dataset, label2id = tweetnlp.load_dataset('offensive')
  • Emoji Prediction: The goal of emoji prediction is to predict the final emoji on a given tweet. The dataset used to fine-tune our models is the TweetEval adaptation from the SemEval 2018 task on Emoji Prediction (check the paper here), including 20 emoji as labels (❤, 😍, 😂, 💕, 🔥, 😊, 😎, ✨, 💙, 😘, 📷, 🇺🇸, ☀, 💜, 😉, 💯, 😁, 🎄, 📸, 😜).
import tweetnlp # MODEL model = tweetnlp.load_model('emoji') # Or `model = tweetnlp.Emoji()` model.emoji('Beautiful sunset last night from the pontoon @TupperLakeNY') # Or `model.predict` >>> {'label': '😊'} model.emoji('Beautiful sunset last night from the pontoon @TupperLakeNY', return_probability=True) >>> {'label': '📷', 'probability': {'❤': 0.13197319209575653, '😍': 0.11246423423290253, '😂': 0.008415069431066513, '💕': 0.04842926934361458, '🔥': 0.014528146013617516, '😊': 0.1509675830602646, '😎': 0.08625403046607971, '✨': 0.01616635173559189, '💙': 0.07396604865789413, '😘': 0.03033279813826084, '📷': 0.16525287926197052, '🇺🇸': 0.020336611196398735, '☀': 0.00799981877207756, '💜': 0.016111424192786217, '😉': 0.012984540313482285, '💯': 0.012557178735733032, '😁': 0.031386848539114, '🎄': 0.006829539313912392, '📸': 0.04188741743564606, '😜': 0.011156936176121235}} # GET DATASET dataset, label2id = tweetnlp.load_dataset('emoji')
  • Emotion Recognition: Given a tweet, this task consists of associating it with its most appropriate emotion. As a reference dataset we use the SemEval 2018 task on Affect in Tweets (check the paper here). The latest multi-label model includes eleven emotion types.
import tweetnlp # MULTI-LABEL MODEL model = tweetnlp.load_model('emotion') # Or `model = tweetnlp.Emotion()` model.emotion('I love swimming for the same reason I love meditating...the feeling of weightlessness.') # Or `model.predict` >>> {'label': 'joy'} # Note: the probability of the multi-label model is the output of sigmoid function on binary prediction whether each topic is positive or negative. model.emotion('I love swimming for the same reason I love meditating...the feeling of weightlessness.', return_probability=True) >>> {'label': 'joy', 'probability': {'anger': 0.00025800734874792397, 'anticipation': 0.0005329723935574293, 'disgust': 0.00026112011983059347, 'fear': 0.00027552215033210814, 'joy': 0.7721399068832397, 'love': 0.1806265264749527, 'optimism': 0.04208092764019966, 'pessimism': 0.00025325192837044597, 'sadness': 0.0006160663324408233, 'surprise': 0.0005619609728455544, 'trust': 0.002393839880824089}} # SINGLE-LABEL MODEL model = tweetnlp.load_model('emotion') # Or `model = tweetnlp.Emotion()` model.emotion('I love swimming for the same reason I love meditating...the feeling of weightlessness.') # Or `model.predict` >>> {'label': 'joy'} # NOTE: the probability of the

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多