timetk

timetk

R语言时间序列分析与可视化工具包

timetk是一个功能丰富的R语言时间序列分析工具包。它提供数据可视化、处理和特征工程功能,支持交互式和静态绘图、时间序列机器学习、异常检测和聚类分析。与同类包相比,timetk功能更全面、易用性更高,可简化时间序列分析和预测建模流程。该包适用于需要高效处理和分析时间序列数据的研究人员和数据科学家。

timetk时间序列分析R语言数据可视化机器学习Github开源项目

R语言的timetk包

<!-- 徽章:开始 -->

R-CMD-检查 CRAN状态徽章 codecov

<!-- 徽章:结束 -->

让R语言中的时间序列分析更简单。

使命:让R语言中的时间序列分析变得更简单、更快速、更愉快。

安装

下载包含最新功能的开发版本

remotes::install_github("business-science/timetk")

或者,下载CRAN批准的版本

install.packages("timetk")

包功能

很多R包用于处理时间序列数据。以下是timetk与"整洁的"时间序列R包在数据可视化、数据整理和特征工程方面的比较(这些包利用数据框或tibbles)。

<div class="comparison"> | 任务 | [timetk](https://business-science.github.io/timetk/) | [tsibble](https://tsibble.tidyverts.org/index.html) | [feasts](https://feasts.tidyverts.org/index.html) | [tibbletime (已停用)](https://business-science.github.io/tibbletime/) | |-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------| | **结构** | | | | | | 数据结构 | tibble (tbl) | tsibble (tbl_ts) | tsibble (tbl_ts) | tibbletime (tbl_time) | | [**可视化**](https://business-science.github.io/timetk/articles/TK04_Plotting_Time_Series.html) | | | | | | 交互式图表(plotly) | ✅ | :x: | :x: | :x: | | 静态图表(ggplot) | ✅ | :x: | ✅ | :x: | | [时间序列](https://business-science.github.io/timetk/articles/TK04_Plotting_Time_Series.html) | ✅ | :x: | ✅ | :x: | | [相关性、季节性](https://business-science.github.io/timetk/articles/TK05_Plotting_Seasonality_and_Correlation.html) | ✅ | :x: | ✅ | :x: | | [**数据整理**](https://business-science.github.io/timetk/articles/TK07_Time_Series_Data_Wrangling.html) | | | | | | 基于时间的汇总 | ✅ | :x: | :x: | ✅ | | 基于时间的筛选 | ✅ | :x: | :x: | ✅ | | 填补空缺 | ✅ | ✅ | :x: | :x: | | 低频到高频 | ✅ | :x: | :x: | :x: | | 插值 | ✅ | ✅ | :x: | :x: | | 滑动/滚动 | ✅ | ✅ | :x: | ✅ | | **机器学习** | | | | | | [时间序列机器学习](https://business-science.github.io/timetk/articles/TK03_Forecasting_Using_Time_Series_Signature.html) | ✅ | :x: | :x: | :x: | | [异常检测](https://business-science.github.io/timetk/articles/TK08_Automatic_Anomaly_Detection.html) | ✅ | :x: | :x: | :x: | | [聚类](https://business-science.github.io/timetk/articles/TK09_Clustering.html) | ✅ | :x: | :x: | :x: | | [**特征工程(recipes)**](https://business-science.github.io/timetk/articles/TK03_Forecasting_Using_Time_Series_Signature.html) | | | | | | 日期特征工程 | ✅ | :x: | :x: | :x: | | 节假日特征工程 | ✅ | :x: | :x: | :x: | | 傅里叶级数 | ✅ | :x: | :x: | :x: | | 平滑和滚动 | ✅ | :x: | :x: | :x: | | 填充 | ✅ | :x: | :x: | :x: | | 插值 | ✅ | :x: | :x: | :x: | | **交叉验证(rsample)** | | | | | | [时间序列交叉验证](https://business-science.github.io/timetk/reference/time_series_cv.html) | ✅ | :x: | :x: | :x: | | [时间序列交叉验证计划可视化](https://business-science.github.io/timetk/reference/plot_time_series_cv_plan.html) | ✅ | :x: | :x: | :x: | | **更多精彩功能** | | | | | | [创建时间序列(智能方式)](https://business-science.github.io/timetk/articles/TK02_Time_Series_Date_Sequences.html) | ✅ | ✅ | :x: | ✅ | | [处理节假日和周末](https://business-science.github.io/timetk/articles/TK02_Time_Series_Date_Sequences.html) | ✅ | :x: | :x: | :x: | | [类型转换](https://business-science.github.io/timetk/articles/TK00_Time_Series_Coercion.html) | ✅ | ✅ | :x: | :x: | | [自动频率和趋势](https://business-science.github.io/timetk/articles/TK06_Automatic_Frequency_And_Trend_Selection.html) | ✅ | :x: | :x: | :x: | </div>

入门指南

概述

Timetk是一个出色的软件包,是用于时间序列分析和预测的modeltime生态系统的一部分。这个预测系统非常庞大,需要很长时间才能学会:

  • 众多算法
  • 集成和重采样
  • 机器学习
  • 深度学习
  • 可扩展建模:10,000多个时间序列

你可能在想我该如何学习时间序列预测。这里有一个能让你省去多年挣扎的解决方案。

参加高性能预测课程

成为你所在组织的预测专家

<a href="https://university.business-science.io/p/ds4b-203-r-high-performance-time-series-forecasting/" target="_blank"><img src="https://www.filepicker.io/api/file/bKyqVAi5Qi64sS05QYLk" alt="高性能时间序列预测课程" width="100%" style="box-shadow: 0 0 5px 2px rgba(0, 0, 0, .5);"/></a>

高性能时间序列课程

时间序列正在发生变化

时间序列正在发生变化。**企业现在每天需要10,000多个时间序列预测。**这就是我所说的高性能时间序列预测系统(HPTSF) - 准确、稳健且可扩展的预测。

**高性能预测系统将通过提高准确性和可扩展性来拯救公司。**想象一下,如果你能为你的组织提供一个"高性能时间序列预测系统"(HPTSF系统),你的职业生涯会发生什么变化。

如何学习高性能时间序列预测

我在高性能时间序列预测课程中教授如何构建HPTFS系统。你将学习:

  • 使用Modeltime进行时间序列机器学习(前沿技术) - 30多种模型(Prophet、ARIMA、XGBoost、随机森林等)
  • 使用GluonTS进行深度学习(竞赛获胜者)
  • 时间序列预处理、降噪和异常检测
  • 使用滞后变量和外部回归变量进行特征工程
  • 超参数调优
  • 时间序列交叉验证
  • 集成多种机器学习和单变量建模技术(竞赛获胜者)
  • 可扩展预测 - 并行预测1000多个时间序列
  • 等等。
<p class="text-center" style="font-size:24px;"> 成为你所在组织的时间序列专家。 </p> <br> <p class="text-center" style="font-size:30px;"> <a href="https://university.business-science.io/p/ds4b-203-r-high-performance-time-series-forecasting">参加高性能时间序列预测课程</a> </p>

致谢

没有其他出色的时间序列软件包,timetk软件包就不可能实现。

  • stats - 基本上每个timetk函数中使用周期(频率)参数的都归功于ts()
    • plot_acf_diagnostics():利用stats::acf()stats::pacf()stats::ccf()
    • plot_stl_diagnostics():利用stats::stl()
  • lubridatetimetk大量使用floor_date()ceiling_date()duration()来处理"基于时间的短语"。
    • 添加和减去时间(%+time%%-time%): "2012-01-01" %+time% "1 month 4 days"使用lubridate智能地偏移日期
  • xts:用于计算周期性和快速滞后自动化。
  • forecast(已退休):可能是我最喜欢的R包。它基于ts,其继任者是tidyvertsfabletsibblefeastsfabletools)。
    • ts_impute_vec()函数使用STL + 线性插值进行低级向量化插补,底层使用na.interp()
    • ts_clean_vec()函数使用STL + 线性插值进行低级向量化清理,底层使用tsclean()
    • Box Cox变换auto_lambda()使用BoxCox.Lambda()
  • tibbletime(已退休):虽然timetk不导入tibbletime,但它使用了许多创新功能来解释基于时间的短语:
    • tk_make_timeseries() - 扩展seq.Date()seq.POSIXt(),使用简单的短语如"2012-02"来填充2012年2月从开始到结束的整个时间序列。
    • filter_by_time()between_time() - 使用创新的端点检测,可处理如"2012"这样的短语
    • slidify()基本上是使用slider(见下文)的rollify()
  • slider:一个强大的R包,提供purrr语法进行复杂的滚动(滑动)计算。
    • slidify()底层使用slider::pslide
    • slidify_vec()使用slider::slide_vec()进行简单的向量化滚动(滑动)。
  • padr:用于将时间序列从低频填充到高频并填补空缺。
    • pad_by_time()函数是padr::pad()的封装。
    • 查看step_ts_pad()以将填充应用为预处理配方!
  • TSstudio:这是最好的交互式时间序列可视化工具。它利用ts系统,与forecast R包使用的系统相同。许多可视化灵感都来自使用TSstudio

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多