multiwoz

multiwoz

大规模多领域任务型对话数据集

MultiWOZ是一个包含10,000多个人类对话的全标注多领域任务型对话数据集。它涵盖多个领域和主题,规模超过以往任务型语料库。该数据集为对话状态追踪、响应生成等任务提供基准测试,并通过版本更新持续提高数据质量。MultiWOZ为对话系统研究提供了重要资源,促进了该领域的发展。

MultiWOZ任务型对话数据集对话状态追踪对话生成Github开源项目

MultiWOZ

Multi-Domain Wizard-of-Oz dataset (MultiWOZ), a fully-labeled collection of human-human written conversations spanning over multiple domains and topics. At a size of 10k dialogues, it is at least one order of magnitude larger than all previous annotated task-oriented corpora.

Versions

Dataset access

These datasets can be directly loaded through DialogStudio.

Data structure

There are 3,406 single-domain dialogues that include booking if the domain allows for that and 7,032 multi-domain dialogues consisting of at least 2 up to 5 domains. To enforce reproducibility of results, the corpus was randomly split into a train, test and development set. The test and development sets contain 1k examples each. Even though all dialogues are coherent, some of them were not finished in terms of task description. Therefore, the validation and test sets only contain fully successful dialogues thus enabling a fair comparison of models. There are no dialogues from hospital and police domains in validation and testing sets.

Each dialogue consists of a goal, multiple user and system utterances as well as a belief state. Additionally, the task description in natural language presented to turkers working from the visitor’s side is added. Dialogues with MUL in the name refers to multi-domain dialogues. Dialogues with SNG refers to single-domain dialogues (but a booking sub-domain is possible). The booking might not have been possible to complete if fail_book option is not empty in goal specifications – turkers did not know about that.

The belief state have three sections: semi, book and booked. Semi refers to slots from a particular domain. Book refers to booking slots for a particular domain and booked is a sub-list of book dictionary with information about the booked entity (once the booking has been made). The goal sometimes was wrongly followed by the turkers which may results in the wrong belief state. The joint accuracy metrics includes ALL slots.

:grey_question: FAQ

  • File names refer to two types of dialogues. The MUL and PMUL names refer to strictly multi domain dialogues (at least 2 main domains are involved) while the SNG, SSNG and WOZ names refer to single domain dialogues with potentially sub-domains like booking.
  • Only system utterances are manually annotated with dialogue acts – there are no human annotations from the user side. But MultiWOZ 2.1 automatically annotated user dialogue acts via heuristics developed in ConvLab.
  • There is no 1-to-1 mapping between dialogue acts and sentences.
  • There is no dialogue state tracking labels for police and hospital as these domains are very simple. However, there are no dialogues with these domains in validation and testing sets either.

:trophy: Benchmarks

If you want to update benchmarks table with new results, please create a pull request to incorporate the new model.

Dialog State Tracking

:bangbang: For the DST experiments please follow the data processing and scoring scripts from the TRADE model.

<div class="datagrid" style="width:500px;"> <table> <thead><tr><th></th><th colspan="2">MultiWOZ 2.0</th><th colspan="2">MultiWOZ 2.1</th><th colspan="2">MultiWOZ 2.2</th></tr></thead> <thead><tr><th>Model</th><th>Joint Accuracy</th><th>Slot</th><th>Joint Accuracy</th><th>Slot</th><th>Joint Accuracy</th><th>Slot</th></tr></thead> <tbody> <tr><td><a href="https://www.aclweb.org/anthology/P18-2069">MDBT</a> (Ramadan et al., 2018) </td><td>15.57 </td><td>89.53</td><td></td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/abs/1805.09655">GLAD</a> (Zhong et al., 2018)</td><td>35.57</td><td>95.44 </td><td></td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/1812.00899.pdf">GCE</a> (Nouri and Hosseini-Asl, 2018)</td><td>36.27</td><td>98.42</td><td></td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/1908.01946.pdf">Neural Reading</a> (Gao et al, 2019)</td><td>41.10</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/1907.00883.pdf">HyST</a> (Goel et al, 2019)</td><td>44.24</td><td></td><td></td><td></td> <td></td><td></td></tr> <tr><td><a href="https://www.aclweb.org/anthology/P19-1546/">SUMBT</a> (Lee et al, 2019)</td><td>46.65</td><td>96.44</td><td></td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/1909.05855.pdf">SGD-baseline</a> (Rastogi et al, 2019)</td><td></td><td></td><td>43.4</td><td></td><td>42.0</td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/1905.08743.pdf">TRADE</a> (Wu et al, 2019)</td><td>48.62</td><td>96.92</td><td>46.0</td><td></td><td>45.4</td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/1909.00754.pdf">COMER</a> (Ren et al, 2019)</td><td>48.79</td><td></td><td></td><td></td<td></td><td></td><td></td></tr> <tr><td><a href="https://www.aclweb.org/anthology/2020.acl-main.636.pdf">MERET</a> (Huang et al, 2020)</td><td>50.91</td><td>97.07</td><td></td><td></td<td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2203.08568.pdf">In-Context Learning (Codex)</a> (Hu et al. 2022)</td><td></td><td></td><td>50.65<td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/1911.06192.pdf">DSTQA</a> (Zhou et al, 2019)</td><td>51.44</td><td>97.24</td><td>51.17</td><td>97.21</td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2009.10447.pdf">SUMBT+LaRL</a> (Lee et al. 2020)</td><td>51.52</td><td>97.89</td><td> </td><td> </td><td> </td><td> </td></tr> <tr><td><a href="https://arxiv.org/pdf/1910.03544.pdf">DS-DST</a> (Zhang et al, 2019)</td><td></td><td></td><td>51.2</td><td></td><td>51.7</td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2009.08115.pdf">LABES-S2S</a> (Zhang et al, 2020)</td><td></td><td></td><td>51.45</td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/1910.03544.pdf">DST-Picklist</a> (Zhang et al, 2019)</td><td>54.39</td><td></td><td>53.3</td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2009.12005.pdf">MinTL-BART</a> (Lin et al, 2020)</td><td>52.10</td><td></td><td>53.62</td><td></td><td></td><td></td></tr> <tr><td><a href="https://www.aaai.org/Papers/AAAI/2020GB/AAAI-ChenL.10030.pdf">SST</a> (Chen et al. 2020)</td><td></td><td></td><td>55.23</td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/abs/2005.02877">TripPy</a> (Heck et al. 2020)</td><td></td><td></td><td>55.3</td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2005.00796.pdf">SimpleTOD</a> (Hosseini-Asl et al. 2020)</td><td></td><td></td><td>56.45</td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2109.14739.pdf">PPTOD</a> (Su et al. 2021)</td><td>53.89</td><td></td><td>57.45</td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2009.13570.pdf">ConvBERT-DG + Multi</a> (Mehri et al. 2020)</td><td></td><td></td><td>58.7</td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/abs/2112.08321">PrefineDST</a> (Cho et al. 2021)</td><td></td><td></td><td>58.9* (53.8)</td><td></td><td></td><td></td></tr> <tr><td><a href="https://aclanthology.org/2022.coling-1.46/">SPACE-2</a> (He et al. 2022)</td><td></td><td></td><td>59.51</td><td></td><td></td><td></td></tr> <tr><td><a href="https://openreview.net/forum?id=oyZxhRI2RiE">TripPy + SCoRe</a> (Yu et al. 2021)</td><td></td><td></td><td>60.48</td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2010.12850.pdf">TripPy + CoCoAug</a> (Li and Yavuz et al. 2020)</td><td></td><td></td><td>60.53</td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/abs/2106.00291">TripPy + SaCLog</a> (Dai et al. 2021)</td><td></td><td></td><td>60.61</td><td></td><td></td><td></td></tr> <tr><td><a href="https://aclanthology.org/2021.emnlp-main.620.pdf">KAGE-GPT2</a> (Lin et al, 2021)</td><td>54.86</td><td>97.47</td><td></td><td></td><td></td><td></td></tr> <tr><td><a href="https://aclanthology.org/2021.nlp4convai-1.8/">AG-DST</a> (Tian et al. 2021)</td><td></td><td></td><td></td><td></td><td>57.26</td><td></td></tr> <tr><td><a href="https://arxiv.org/abs/2209.06664">SPACE-3</a> (He et al. 2022)</td><td></td><td></td><td></td><td></td><td>57.50</td><td></td></tr> <tr><td><a href="https://aclanthology.org/2021.emnlp-main.404.pdf">SDP-DST</a> (Lee et al. 2021)</td><td></td><td></td><td>56.66<td></td><td>57.60</td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2201.08904.pdf">D3ST</a> (Zhao et al. 2022)</td><td></td><td></td><td>57.80<td></td><td>58.70</td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2110.11205v3.pdf">DAIR</a> (Huang et al. 2022)</td><td></td><td></td><td></td><td></td><td>59.98</td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2305.02468.pdf">TOATOD</a> (Bang et al. 2023)</td><td></td><td></td><td>54.97</td><td></td><td>63.79</td><td></td></tr> </tbody> </table>

Note: *SimpleTOD's evaluation setting does not distinguish between dontcare and none slot values, which results in an inflated JGA. Results when this discrepancy is resolved are shown in parantheses. Refer more details to the CheckDST github for a corrected evaluation script: https://github.com/wise-east/checkdst.

</div>

Response Generation

:bangbang: For the response generation evaluation please see and use the scoring scripts from this repository.

  • See this directory for details about the raw generated predictions of other models.
  • Inform meaures whether the system provides an appropriate entity and Success measures whether the system answers all the requested attributes.
  • BLEU reported in these tables is calculated with references obtained from the MultiWOZ 2.2 span annotations.
  • CBE stands for conditional bigram entropy.
ModelBLEUInformSuccessAv. len.CBE#uniq. words#uniq. 3-grams
Reference corpus  -93.790.914.003.01140723877

End-to-end models, i.e. those that use only the dialogue context as input to generate responses.

Combined Score = (INFORM + SUCCESS)*0.5 + BLEU
ModelBLEUInformSuccessCombined ScoreAv. len.CBE#uniq. words#uniq. 3-grams
LABES

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多