multiwoz

multiwoz

大规模多领域任务型对话数据集

MultiWOZ是一个包含10,000多个人类对话的全标注多领域任务型对话数据集。它涵盖多个领域和主题,规模超过以往任务型语料库。该数据集为对话状态追踪、响应生成等任务提供基准测试,并通过版本更新持续提高数据质量。MultiWOZ为对话系统研究提供了重要资源,促进了该领域的发展。

MultiWOZ任务型对话数据集对话状态追踪对话生成Github开源项目

MultiWOZ

Multi-Domain Wizard-of-Oz dataset (MultiWOZ), a fully-labeled collection of human-human written conversations spanning over multiple domains and topics. At a size of 10k dialogues, it is at least one order of magnitude larger than all previous annotated task-oriented corpora.

Versions

Dataset access

These datasets can be directly loaded through DialogStudio.

Data structure

There are 3,406 single-domain dialogues that include booking if the domain allows for that and 7,032 multi-domain dialogues consisting of at least 2 up to 5 domains. To enforce reproducibility of results, the corpus was randomly split into a train, test and development set. The test and development sets contain 1k examples each. Even though all dialogues are coherent, some of them were not finished in terms of task description. Therefore, the validation and test sets only contain fully successful dialogues thus enabling a fair comparison of models. There are no dialogues from hospital and police domains in validation and testing sets.

Each dialogue consists of a goal, multiple user and system utterances as well as a belief state. Additionally, the task description in natural language presented to turkers working from the visitor’s side is added. Dialogues with MUL in the name refers to multi-domain dialogues. Dialogues with SNG refers to single-domain dialogues (but a booking sub-domain is possible). The booking might not have been possible to complete if fail_book option is not empty in goal specifications – turkers did not know about that.

The belief state have three sections: semi, book and booked. Semi refers to slots from a particular domain. Book refers to booking slots for a particular domain and booked is a sub-list of book dictionary with information about the booked entity (once the booking has been made). The goal sometimes was wrongly followed by the turkers which may results in the wrong belief state. The joint accuracy metrics includes ALL slots.

:grey_question: FAQ

  • File names refer to two types of dialogues. The MUL and PMUL names refer to strictly multi domain dialogues (at least 2 main domains are involved) while the SNG, SSNG and WOZ names refer to single domain dialogues with potentially sub-domains like booking.
  • Only system utterances are manually annotated with dialogue acts – there are no human annotations from the user side. But MultiWOZ 2.1 automatically annotated user dialogue acts via heuristics developed in ConvLab.
  • There is no 1-to-1 mapping between dialogue acts and sentences.
  • There is no dialogue state tracking labels for police and hospital as these domains are very simple. However, there are no dialogues with these domains in validation and testing sets either.

:trophy: Benchmarks

If you want to update benchmarks table with new results, please create a pull request to incorporate the new model.

Dialog State Tracking

:bangbang: For the DST experiments please follow the data processing and scoring scripts from the TRADE model.

<div class="datagrid" style="width:500px;"> <table> <thead><tr><th></th><th colspan="2">MultiWOZ 2.0</th><th colspan="2">MultiWOZ 2.1</th><th colspan="2">MultiWOZ 2.2</th></tr></thead> <thead><tr><th>Model</th><th>Joint Accuracy</th><th>Slot</th><th>Joint Accuracy</th><th>Slot</th><th>Joint Accuracy</th><th>Slot</th></tr></thead> <tbody> <tr><td><a href="https://www.aclweb.org/anthology/P18-2069">MDBT</a> (Ramadan et al., 2018) </td><td>15.57 </td><td>89.53</td><td></td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/abs/1805.09655">GLAD</a> (Zhong et al., 2018)</td><td>35.57</td><td>95.44 </td><td></td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/1812.00899.pdf">GCE</a> (Nouri and Hosseini-Asl, 2018)</td><td>36.27</td><td>98.42</td><td></td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/1908.01946.pdf">Neural Reading</a> (Gao et al, 2019)</td><td>41.10</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/1907.00883.pdf">HyST</a> (Goel et al, 2019)</td><td>44.24</td><td></td><td></td><td></td> <td></td><td></td></tr> <tr><td><a href="https://www.aclweb.org/anthology/P19-1546/">SUMBT</a> (Lee et al, 2019)</td><td>46.65</td><td>96.44</td><td></td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/1909.05855.pdf">SGD-baseline</a> (Rastogi et al, 2019)</td><td></td><td></td><td>43.4</td><td></td><td>42.0</td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/1905.08743.pdf">TRADE</a> (Wu et al, 2019)</td><td>48.62</td><td>96.92</td><td>46.0</td><td></td><td>45.4</td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/1909.00754.pdf">COMER</a> (Ren et al, 2019)</td><td>48.79</td><td></td><td></td><td></td<td></td><td></td><td></td></tr> <tr><td><a href="https://www.aclweb.org/anthology/2020.acl-main.636.pdf">MERET</a> (Huang et al, 2020)</td><td>50.91</td><td>97.07</td><td></td><td></td<td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2203.08568.pdf">In-Context Learning (Codex)</a> (Hu et al. 2022)</td><td></td><td></td><td>50.65<td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/1911.06192.pdf">DSTQA</a> (Zhou et al, 2019)</td><td>51.44</td><td>97.24</td><td>51.17</td><td>97.21</td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2009.10447.pdf">SUMBT+LaRL</a> (Lee et al. 2020)</td><td>51.52</td><td>97.89</td><td> </td><td> </td><td> </td><td> </td></tr> <tr><td><a href="https://arxiv.org/pdf/1910.03544.pdf">DS-DST</a> (Zhang et al, 2019)</td><td></td><td></td><td>51.2</td><td></td><td>51.7</td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2009.08115.pdf">LABES-S2S</a> (Zhang et al, 2020)</td><td></td><td></td><td>51.45</td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/1910.03544.pdf">DST-Picklist</a> (Zhang et al, 2019)</td><td>54.39</td><td></td><td>53.3</td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2009.12005.pdf">MinTL-BART</a> (Lin et al, 2020)</td><td>52.10</td><td></td><td>53.62</td><td></td><td></td><td></td></tr> <tr><td><a href="https://www.aaai.org/Papers/AAAI/2020GB/AAAI-ChenL.10030.pdf">SST</a> (Chen et al. 2020)</td><td></td><td></td><td>55.23</td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/abs/2005.02877">TripPy</a> (Heck et al. 2020)</td><td></td><td></td><td>55.3</td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2005.00796.pdf">SimpleTOD</a> (Hosseini-Asl et al. 2020)</td><td></td><td></td><td>56.45</td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2109.14739.pdf">PPTOD</a> (Su et al. 2021)</td><td>53.89</td><td></td><td>57.45</td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2009.13570.pdf">ConvBERT-DG + Multi</a> (Mehri et al. 2020)</td><td></td><td></td><td>58.7</td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/abs/2112.08321">PrefineDST</a> (Cho et al. 2021)</td><td></td><td></td><td>58.9* (53.8)</td><td></td><td></td><td></td></tr> <tr><td><a href="https://aclanthology.org/2022.coling-1.46/">SPACE-2</a> (He et al. 2022)</td><td></td><td></td><td>59.51</td><td></td><td></td><td></td></tr> <tr><td><a href="https://openreview.net/forum?id=oyZxhRI2RiE">TripPy + SCoRe</a> (Yu et al. 2021)</td><td></td><td></td><td>60.48</td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2010.12850.pdf">TripPy + CoCoAug</a> (Li and Yavuz et al. 2020)</td><td></td><td></td><td>60.53</td><td></td><td></td><td></td></tr> <tr><td><a href="https://arxiv.org/abs/2106.00291">TripPy + SaCLog</a> (Dai et al. 2021)</td><td></td><td></td><td>60.61</td><td></td><td></td><td></td></tr> <tr><td><a href="https://aclanthology.org/2021.emnlp-main.620.pdf">KAGE-GPT2</a> (Lin et al, 2021)</td><td>54.86</td><td>97.47</td><td></td><td></td><td></td><td></td></tr> <tr><td><a href="https://aclanthology.org/2021.nlp4convai-1.8/">AG-DST</a> (Tian et al. 2021)</td><td></td><td></td><td></td><td></td><td>57.26</td><td></td></tr> <tr><td><a href="https://arxiv.org/abs/2209.06664">SPACE-3</a> (He et al. 2022)</td><td></td><td></td><td></td><td></td><td>57.50</td><td></td></tr> <tr><td><a href="https://aclanthology.org/2021.emnlp-main.404.pdf">SDP-DST</a> (Lee et al. 2021)</td><td></td><td></td><td>56.66<td></td><td>57.60</td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2201.08904.pdf">D3ST</a> (Zhao et al. 2022)</td><td></td><td></td><td>57.80<td></td><td>58.70</td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2110.11205v3.pdf">DAIR</a> (Huang et al. 2022)</td><td></td><td></td><td></td><td></td><td>59.98</td><td></td></tr> <tr><td><a href="https://arxiv.org/pdf/2305.02468.pdf">TOATOD</a> (Bang et al. 2023)</td><td></td><td></td><td>54.97</td><td></td><td>63.79</td><td></td></tr> </tbody> </table>

Note: *SimpleTOD's evaluation setting does not distinguish between dontcare and none slot values, which results in an inflated JGA. Results when this discrepancy is resolved are shown in parantheses. Refer more details to the CheckDST github for a corrected evaluation script: https://github.com/wise-east/checkdst.

</div>

Response Generation

:bangbang: For the response generation evaluation please see and use the scoring scripts from this repository.

  • See this directory for details about the raw generated predictions of other models.
  • Inform meaures whether the system provides an appropriate entity and Success measures whether the system answers all the requested attributes.
  • BLEU reported in these tables is calculated with references obtained from the MultiWOZ 2.2 span annotations.
  • CBE stands for conditional bigram entropy.
ModelBLEUInformSuccessAv. len.CBE#uniq. words#uniq. 3-grams
Reference corpus  -93.790.914.003.01140723877

End-to-end models, i.e. those that use only the dialogue context as input to generate responses.

Combined Score = (INFORM + SUCCESS)*0.5 + BLEU
ModelBLEUInformSuccessCombined ScoreAv. len.CBE#uniq. words#uniq. 3-grams
LABES

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多