MeshAnything

MeshAnything

自回归Transformer实现的3D网格生成技术

MeshAnything是一种基于自回归Transformer的3D网格生成技术,可根据输入生成高质量3D模型。支持网格和点云输入,能生成最多800面的模型。提供命令行接口和Gradio演示,适用于3D重建、扫描等场景。项目采用Python实现,支持Ubuntu系统和CUDA 11.8。安装简便,可通过pip直接安装或从GitHub克隆。目前已发布350m版本,并推出支持1600面的V2版本。

三维模型生成人工智能机器学习深度学习计算机视觉Github开源项目
<p align="center"> <h3 align="center"><strong>MeshAnything:<br> 基于自回归变换器的<br>艺术家创作网格生成</strong></h3> <p align="center"> <a href="https://buaacyw.github.io/">陈怡文</a><sup>1,2*</sup>, <a href="https://tonghe90.github.io/">何通</a><sup>2†</sup>, <a href="https://dihuang.me/">黄迪</a><sup>2</sup>, <a href="https://ywcmaike.github.io/">叶伟才</a><sup>2</sup>, <a href="https://ch3cook-fdu.github.io/">陈思进</a><sup>3</sup>, <a href="https://me.kiui.moe/">唐嘉祥</a><sup>4</sup><br> <a href="https://chenxin.tech/">陈鑫</a><sup>5</sup>, <a href="https://caizhongang.github.io/">蔡忠罡</a><sup>6</sup>, <a href="https://scholar.google.com.hk/citations?user=jZH2IPYAAAAJ&hl=en">杨磊</a><sup>6</sup>, <a href="https://www.skicyyu.org/">余刚</a><sup>7</sup>, <a href="https://guosheng.github.io/">林国升</a><sup>1†</sup>, <a href="https://icoz69.github.io/">张驰</a><sup>8†</sup> <br> <sup>*</sup>在上海人工智能实验室研究实习期间完成的工作。 <br> <sup>†</sup>通讯作者。 <br> <sup>1</sup>南洋理工大学S-Lab, <sup>2</sup>上海人工智能实验室, <br> <sup>3</sup>复旦大学, <sup>4</sup>北京大学, <sup>5</sup>中国科学院大学, <br> <sup>6</sup>商汤科技研究院, <sup>7</sup>Stepfun, <sup>8</sup>西湖大学 </p> <div align="center">

<a href='https://arxiv.org/abs/2406.10163'><img src='https://yellow-cdn.veclightyear.com/835a84d5/a7865118-5ef8-438b-b3d9-4f90f64e303c.svg'></a>      <a href='https://buaacyw.github.io/mesh-anything/'><img src='https://img.shields.io/badge/Project-Page-Green'></a>      <a href='https://github.com/buaacyw/MeshAnything/blob/master/LICENSE.txt'><img src='https://img.shields.io/badge/License-SLab-blue'></a>      <a href="https://huggingface.co/Yiwen-ntu/MeshAnything/tree/main"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Weights-HF-orange"></a>      <a href="https://huggingface.co/spaces/Yiwen-ntu/MeshAnything"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Gradio%20Demo-HF-orange"></a>

</div> <p align="center"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/ee5f2ee4-608a-4c9d-959e-ea1ee9459a9a.gif" alt="演示GIF" width="512px" /> </p>

发布

  • [6/17] 🔥🔥 尝试我们新发布的 MeshAnything V2。V2版本的最大面数增加到1600,性能更佳。
  • [6/17] 我们发布了350m版本的 MeshAnything

目录

安装

我们的环境已在Ubuntu 22、CUDA 11.8上使用A100、A800和A6000进行测试。

  1. 克隆我们的仓库并创建conda环境
git clone https://github.com/buaacyw/MeshAnything.git && cd MeshAnything
conda create -n MeshAnything python==3.10.13 -y
conda activate MeshAnything
pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt
pip install flash-attn --no-build-isolation

或者

pip install git+https://github.com/buaacyw/MeshAnything.git

然后在你的代码中直接使用

import MeshAnything

使用

本地Gradio演示 <a href='https://github.com/gradio-app/gradio'><img src='https://img.shields.io/github/stars/gradio-app/gradio'></a>

python app.py

网格命令行推理

# 文件夹输入
python main.py --input_dir examples --out_dir mesh_output --input_type mesh

# 单文件输入
python main.py --input_path examples/wand.obj --out_dir mesh_output --input_type mesh

# 先用Marching Cubes预处理
python main.py --input_dir examples --out_dir mesh_output --input_type mesh --mc

点云命令行推理

# 注意:如果你想使用自己的点云,请确保包含法线。
# 文件格式应为.npy文件,形状为(N, 6),其中N是点的数量。前3列是坐标,后3列是法线。

# 文件夹推理
python main.py --input_dir pc_examples --out_dir pc_output --input_type pc_normal

# 单文件推理
python main.py --input_path pc_examples/mouse.npy --out_dir pc_output --input_type pc_normal

重要说明

  • 在A6000 GPU上生成一个网格大约需要7GB显存和30秒。
  • 输入网格将被归一化到单位包围盒。为获得更好的结果,输入网格的向上向量应为+Y。
  • 受计算资源限制,MeshAnything在少于800个面的网格上训练,无法生成超过800个面的网格。输入网格的形状应足够锐利;否则,用800个面表示将非常困难。因此,前向3D生成方法由于形状质量不足,常常会产生不好的结果。我们建议使用3D重建、扫描和基于SDS的方法(如DreamCraft3D)的结果作为MeshAnything的输入。
  • 更多示例请参考 https://huggingface.co/spaces/Yiwen-ntu/MeshAnything/tree/main/examples。

待办事项

该仓库仍在建设中,感谢您的耐心等待。

  • 发布训练代码。
  • 发布更大的模型。

致谢

我们的代码基于这些优秀的仓库:

Star历史

Star历史图表

引用

@misc{chen2024meshanything,
  title={MeshAnything: Artist-Created Mesh Generation with Autoregressive Transformers},
  author={Yiwen Chen and Tong He and Di Huang and Weicai Ye and Sijin Chen and Jiaxiang Tang and Xin Chen and Zhongang Cai and Lei Yang and Gang Yu and Guosheng Lin and Chi Zhang},
  year={2024},
  eprint={2406.10163},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

编辑推荐精选

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

下拉加载更多