<a href="https://blobcity.com"><img src="https://cdn.blobcity.com/assets/blobcity-logo.svg" style="width: 40%"/></a>
A framework to find the best performing AI/ML model for any AI problem. Works for Classification and Regression type of problems on numerical data. AutoAI makes AI easy and accessible to everyone. It not only trains the best-performing model but also exports high-quality code for using the trained model.
The framework is currently in beta release, with active development being still in progress. Please report any issues you encounter.
pip install blobcity
import blobcity as bc model = bc.train(file="data.csv", target="Y_column") model.spill("my_code.py")
Y_column
is the name of the target column. The column must be present within the data provided.
Automatic inference of Regression / Classification is supported by the framework.
Data input formats supported include:
model = bc.train(file="data.csv", target="Y_column") #local file
model = bc.train(file="https://example.com/data.csv", target="Y_column") #url
model = bc.train(df=my_df, target="Y_column") #DataFrame
The framework has built-in support for several data pre-processing techniques, such as imputing missing values, column encoding, and data scaling.
Pre-processing is carried out automatically on train data. The predict function carries out the same pre-processing on new data. The user is not required to be concerned with the pre-processing choices of the framework.
One can view the pre-processing methods used on the data by exporting the entire model configuration to a YAML file. Check the section below on "Exporting to YAML."
model.features() #prints the features selected by the model
['Present_Price', 'Vehicle_Age', 'Fuel_Type_CNG', 'Fuel_Type_Diesel', 'Fuel_Type_Petrol', 'Seller_Type_Dealer', 'Seller_Type_Individual', 'Transmission_Automatic', 'Transmission_Manual']
AutoAI automatically performs a feature selection on input data. All features (except target) are potential candidates for the X input.
AutoAI will automatically remove ID / Primary-key columns.
This does not guarantee that all specified features will be used in the final model. The framework will perform an automated feature selection from amongst these features. This only guarantees that other features if present in the data will not be considered.
AutoAI ignores features that have a low importance to the effective output. The feature importance plot can be viewed.
model.plot_feature_importance() #shows a feature importance graph
There might be scenarios where you want to explicitely exclude some columns, or only use a subset of columns in the training. Manually specify the features to be used. AutoAI will still perform a feature selection within the list of features provided to improve effective model accuracy.
model = bc.train(file="data.csv", target="Y_value", features=["col1", "col2", "col3"])
Model search, train and hyper-parameter tuning is fully automatic. It is a 3 step process that tests your data across various AI/ML models. It finds models with high success tendency, and performs a hyper-parameter tuning to find you the best possible result.
High-quality code generation is why most Data Scientists choose AutoAI. The spill
function generates the model code with exhaustive documentation. scikit-learn models export with training code included. TensorFlow and other DNN models produce only the test / final use code.
Code generation is supported in ipynb
and py
file formats, with options to enable or disable detailed documentation exports.
model.spill("my_code.ipynb"); #produces Jupyter Notebook file with full markdown docs
model.spill("my_code.py") #produces python code with minimal docs
model.spill("my_code.py", docs=True) #python code with full docs
model.spill("my_code.ipynb", docs=False) #Notebook file with minimal markdown
Use a trained model to generate predictions on new data.
prediction = model.predict(file="unseen_data.csv")
All required features must be present in the unseen_data.csv
file. Consider checking the results of the automatic feature selection to know the list of features needed by the predict
function.
model.plot_prediction()
The function is shared across Regression and Classification problems. It plots a relevant chart to assess efficiency of training.
Plotting only first 100
rows. You can specify -100
to plot last 100 rows.
model.plot_prediction(100)
model.plot_prediction()
model.summary()
Print model configuration/Hyper Parameter tuning along the key model static parameters, such as Precision, Recall, F1-Score,etc. The parameters change based on the type of AutoAI problem. It also provide information on different data preprocessing steps applied during the complete process.
model.save('./my_model.pkl')
model = bc.load('./my_model.pkl')
You can save a trained model, and load it in the future to generate predictions.
Leverage BlobCity AI Cloud for fast training on large datasets. Reasonable cloud infrastructure included for free.
最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。
像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆 情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号