<a href="https://blobcity.com"><img src="https://cdn.blobcity.com/assets/blobcity-logo.svg" style="width: 40%"/></a>
A framework to find the best performing AI/ML model for any AI problem. Works for Classification and Regression type of problems on numerical data. AutoAI makes AI easy and accessible to everyone. It not only trains the best-performing model but also exports high-quality code for using the trained model.
The framework is currently in beta release, with active development being still in progress. Please report any issues you encounter.
pip install blobcity
import blobcity as bc model = bc.train(file="data.csv", target="Y_column") model.spill("my_code.py")
Y_column
is the name of the target column. The column must be present within the data provided.
Automatic inference of Regression / Classification is supported by the framework.
Data input formats supported include:
model = bc.train(file="data.csv", target="Y_column") #local file
model = bc.train(file="https://example.com/data.csv", target="Y_column") #url
model = bc.train(df=my_df, target="Y_column") #DataFrame
The framework has built-in support for several data pre-processing techniques, such as imputing missing values, column encoding, and data scaling.
Pre-processing is carried out automatically on train data. The predict function carries out the same pre-processing on new data. The user is not required to be concerned with the pre-processing choices of the framework.
One can view the pre-processing methods used on the data by exporting the entire model configuration to a YAML file. Check the section below on "Exporting to YAML."
model.features() #prints the features selected by the model
['Present_Price', 'Vehicle_Age', 'Fuel_Type_CNG', 'Fuel_Type_Diesel', 'Fuel_Type_Petrol', 'Seller_Type_Dealer', 'Seller_Type_Individual', 'Transmission_Automatic', 'Transmission_Manual']
AutoAI automatically performs a feature selection on input data. All features (except target) are potential candidates for the X input.
AutoAI will automatically remove ID / Primary-key columns.
This does not guarantee that all specified features will be used in the final model. The framework will perform an automated feature selection from amongst these features. This only guarantees that other features if present in the data will not be considered.
AutoAI ignores features that have a low importance to the effective output. The feature importance plot can be viewed.
model.plot_feature_importance() #shows a feature importance graph
There might be scenarios where you want to explicitely exclude some columns, or only use a subset of columns in the training. Manually specify the features to be used. AutoAI will still perform a feature selection within the list of features provided to improve effective model accuracy.
model = bc.train(file="data.csv", target="Y_value", features=["col1", "col2", "col3"])
Model search, train and hyper-parameter tuning is fully automatic. It is a 3 step process that tests your data across various AI/ML models. It finds models with high success tendency, and performs a hyper-parameter tuning to find you the best possible result.
High-quality code generation is why most Data Scientists choose AutoAI. The spill
function generates the model code with exhaustive documentation. scikit-learn models export with training code included. TensorFlow and other DNN models produce only the test / final use code.
Code generation is supported in ipynb
and py
file formats, with options to enable or disable detailed documentation exports.
model.spill("my_code.ipynb"); #produces Jupyter Notebook file with full markdown docs
model.spill("my_code.py") #produces python code with minimal docs
model.spill("my_code.py", docs=True) #python code with full docs
model.spill("my_code.ipynb", docs=False) #Notebook file with minimal markdown
Use a trained model to generate predictions on new data.
prediction = model.predict(file="unseen_data.csv")
All required features must be present in the unseen_data.csv
file. Consider checking the results of the automatic feature selection to know the list of features needed by the predict
function.
model.plot_prediction()
The function is shared across Regression and Classification problems. It plots a relevant chart to assess efficiency of training.
Plotting only first 100
rows. You can specify -100
to plot last 100 rows.
model.plot_prediction(100)
model.plot_prediction()
model.summary()
Print model configuration/Hyper Parameter tuning along the key model static parameters, such as Precision, Recall, F1-Score,etc. The parameters change based on the type of AutoAI problem. It also provide information on different data preprocessing steps applied during the complete process.
model.save('./my_model.pkl')
model = bc.load('./my_model.pkl')
You can save a trained model, and load it in the future to generate predictions.
Leverage BlobCity AI Cloud for fast training on large datasets. Reasonable cloud infrastructure included for free.
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号