python

python

BigML Python库,简化机器学习模型创建与管理

BigML Python库为BigML.io API提供了简洁的接口,支持创建、检索、列出、更新和删除BigML资源。兼容Python 3,具备本地预测功能,该库简化了机器学习流程,便于快速构建和部署预测模型。适用于多种数据驱动的决策场景,使机器学习模型的开发和管理变得更加高效。

BigML机器学习Python绑定API预测模型Github开源项目

BigML Python Bindings

BigML <https://bigml.com>_ makes machine learning easy by taking care of the details required to add data-driven decisions and predictive power to your company. Unlike other machine learning services, BigML creates beautiful predictive models <https://bigml.com/gallery/models>_ that can be easily understood and interacted with.

These BigML Python bindings allow you to interact with BigML.io <https://bigml.io/>, the API for BigML. You can use it to easily create, retrieve, list, update, and delete BigML resources (i.e., sources, datasets, models and, predictions). For additional information, see the full documentation for the Python bindings on Read the Docs <http://bigml.readthedocs.org>.

This module is licensed under the Apache License, Version 2.0 <http://www.apache.org/licenses/LICENSE-2.0.html>_.

Support

Please report problems and bugs to our BigML.io issue tracker <https://github.com/bigmlcom/io/issues>_.

Discussions about the different bindings take place in the general BigML mailing list <http://groups.google.com/group/bigml>. Or join us in our Campfire chatroom <https://bigmlinc.campfirenow.com/f20a0>.

Requirements

Only Python 3 versions are currently supported by these bindings. Support for Python 2.7.X ended in version 4.32.3.

The basic third-party dependencies are the requests <https://github.com/kennethreitz/requests>, unidecode <http://pypi.python.org/pypi/Unidecode/#downloads>, requests-toolbelt <https://pypi.python.org/pypi/requests-toolbelt>, bigml-chronos <https://pypi.org/project/bigml-chronos>, msgpack <https://pypi.org/project/msgpack>, numpy <http://www.numpy.org/> and scipy <http://www.scipy.org/>_ libraries. These libraries are automatically installed during the basic setup. Support for Google App Engine has been added as of version 3.0.0, using the urlfetch package instead of requests.

The bindings will also use simplejson if you happen to have it installed, but that is optional: we fall back to Python's built-in JSON libraries is simplejson is not found.

The bindings provide support to use the BigML platform to create, update, get and delete resources, but also to produce local predictions using the models created in BigML. Most of them will be actionable with the basic installation, but some additional dependencies are needed to use local Topic Models and Image Processing models. Please, refer to the Installation <#installation>_ section for details.

OS Requirements


The basic installation of the bindings is compatible and can be used
on Linux and Windows based Operating Systems.
However, the extra options that allow working with
image processing models (``[images]`` and ``[full]``) are only supported
and tested on Linux-based Operating Systems.
For image models, Windows OS is not recommended and cannot be supported out of
the box, because the specific compiler versions or dlls required are
unavailable in general.

Installation
------------

To install the basic latest stable release with
`pip <http://www.pip-installer.org/>`_, please use:

.. code-block:: bash

    $ pip install bigml

Support for local Topic Distributions (Topic Models' predictions)
and local predictions for datasets that include Images will only be
available as extras, because the libraries used for that are not
usually available in all Operative Systems. If you need to support those,
please check the `Installation Extras <#installation-extras>`_ section.

Installation Extras
-------------------

Local Topic Distributions support can be installed using:

.. code-block:: bash

    pip install bigml[topics]

Images local predictions support can be installed using:

.. code-block:: bash

    pip install bigml[images]

The full set of features can be installed using:

.. code-block:: bash

    pip install bigml[full]


WARNING: Mind that installing these extras can require some extra work, as
explained in the `Requirements <#requirements>`_ section.

You can also install the development version of the bindings directly
from the Git repository

.. code-block:: bash

    $ pip install -e git://github.com/bigmlcom/python.git#egg=bigml_python


Running the Tests
-----------------

The tests will be run using `pytest <https://docs.pytest.org/en/7.2.x/>`_.
You'll need to set up your authentication
via environment variables, as explained
in the authentication section. Also some of the tests need other environment
variables like ``BIGML_ORGANIZATION`` to test calls when used by Organization
members and ``BIGML_EXTERNAL_CONN_HOST``, ``BIGML_EXTERNAL_CONN_PORT``,
``BIGML_EXTERNAL_CONN_DB``, ``BIGML_EXTERNAL_CONN_USER``,
``BIGML_EXTERNAL_CONN_PWD`` and ``BIGML_EXTERNAL_CONN_SOURCE``
in order to test external data connectors.

With that in place, you can run the test suite simply by issuing

.. code-block:: bash

    $ pytest

Additionally, `Tox <http://tox.testrun.org/>`_ can be used to
automatically run the test suite in virtual environments for all
supported Python versions.  To install Tox:

.. code-block:: bash

    $ pip install tox

Then run the tests from the top-level project directory:

.. code-block:: bash

    $ tox

Importing the module
--------------------

To import the module:

.. code-block:: python

    import bigml.api

Alternatively you can just import the BigML class:

.. code-block:: python

    from bigml.api import BigML

Authentication
--------------

All the requests to BigML.io must be authenticated using your username
and `API key <https://bigml.com/account/apikey>`_ and are always
transmitted over HTTPS.

This module will look for your username and API key in the environment
variables ``BIGML_USERNAME`` and ``BIGML_API_KEY`` respectively.

Unix and MacOS
--------------

You can
add the following lines to your ``.bashrc`` or ``.bash_profile`` to set
those variables automatically when you log in:

.. code-block:: bash

    export BIGML_USERNAME=myusername
    export BIGML_API_KEY=ae579e7e53fb9abd646a6ff8aa99d4afe83ac291

refer to the next chapters to know how to do that in other operating systems.

With that environment set up, connecting to BigML is a breeze:

.. code-block:: python

    from bigml.api import BigML
    api = BigML()

Otherwise, you can initialize directly when instantiating the BigML
class as follows:

.. code-block:: python

    api = BigML('myusername', 'ae579e7e53fb9abd646a6ff8aa99d4afe83ac291')

These credentials will allow you to manage any resource in your user
environment.

In BigML a user can also work for an ``organization``.
In this case, the organization administrator should previously assign
permissions for the user to access one or several particular projects
in the organization.
Once permissions are granted, the user can work with resources in a project
according to his permission level by creating a special constructor for
each project. The connection constructor in this case
should include the ``project ID``:

.. code-block:: python

    api = BigML('myusername', 'ae579e7e53fb9abd646a6ff8aa99d4afe83ac291',
                project='project/53739b98d994972da7001d4a')

If the project used in a connection object
does not belong to an existing organization but is one of the
projects under the user's account, all the resources
created or updated with that connection will also be assigned to the
specified project.

When the resource to be managed is a ``project`` itself, the connection
needs to include the corresponding``organization ID``:

.. code-block:: python

    api = BigML('myusername', 'ae579e7e53fb9abd646a6ff8aa99d4afe83ac291',
                organization='organization/53739b98d994972da7025d4a')


Authentication on Windows
-------------------------

The credentials should be permanently stored in your system using

.. code-block:: bash

    setx BIGML_USERNAME myusername
    setx BIGML_API_KEY ae579e7e53fb9abd646a6ff8aa99d4afe83ac291

Note that ``setx`` will not change the environment variables of your actual
console, so you will need to open a new one to start using them.


Authentication on Jupyter Notebook
----------------------------------

You can set the environment variables using the ``%env`` command in your
cells:

.. code-block:: bash

    %env BIGML_USERNAME=myusername
    %env BIGML_API_KEY=ae579e7e53fb9abd646a6ff8aa99d4afe83ac291


Alternative domains
-------------------


The main public domain for the API service is ``bigml.io``, but there are some
alternative domains, either for Virtual Private Cloud setups or
the australian subdomain (``au.bigml.io``). You can change the remote
server domain
to the VPC particular one by either setting the ``BIGML_DOMAIN`` environment
variable to your VPC subdomain:

.. code-block:: bash

    export BIGML_DOMAIN=my_VPC.bigml.io

or setting it when instantiating your connection:

.. code-block:: python

    api = BigML(domain="my_VPC.bigml.io")

The corresponding SSL REST calls will be directed to your private domain
henceforth.

You can also set up your connection to use a particular PredictServer
only for predictions. In order to do so, you'll need to specify a ``Domain``
object, where you can set up the general domain name as well as the
particular prediction domain name.

.. code-block:: python

    from bigml.domain import Domain
    from bigml.api import BigML

    domain_info = Domain(prediction_domain="my_prediction_server.bigml.com",
                         prediction_protocol="http")

    api = BigML(domain=domain_info)

Finally, you can combine all the options and change both the general domain
server, and the prediction domain server.

.. code-block:: python

    from bigml.domain import Domain
    from bigml.api import BigML
    domain_info = Domain(domain="my_VPC.bigml.io",
                         prediction_domain="my_prediction_server.bigml.com",
                         prediction_protocol="https")

    api = BigML(domain=domain_info)

Some arguments for the Domain constructor are more unsual, but they can also
be used to set your special service endpoints:

- protocol (string) Protocol for the service
  (when different from HTTPS)
- verify (boolean) Sets on/off the SSL verification
- prediction_verify (boolean) Sets on/off the SSL verification
  for the prediction server (when different from the general
  SSL verification)

**Note** that the previously existing ``dev_mode`` flag:

.. code-block:: python

    api = BigML(dev_mode=True)

that caused the connection to work with the Sandbox ``Development Environment``
has been **deprecated** because this environment does not longer exist.
The existing resources that were previously
created in this environment have been moved
to a special project in the now unique ``Production Environment``, so this
flag is no longer needed to work with them.


Quick Start
-----------

Imagine that you want to use `this csv
file <https://static.bigml.com/csv/iris.csv>`_ containing the `Iris
flower dataset <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ to
predict the species of a flower whose ``petal length`` is ``2.45`` and
whose ``petal width`` is ``1.75``. A preview of the dataset is shown
below. It has 4 numeric fields: ``sepal length``, ``sepal width``,
``petal length``, ``petal width`` and a categorical field: ``species``.
By default, BigML considers the last field in the dataset as the
objective field (i.e., the field that you want to generate predictions
for).

::

    sepal length,sepal width,petal length,petal width,species
    5.1,3.5,1.4,0.2,Iris-setosa
    4.9,3.0,1.4,0.2,Iris-setosa
    4.7,3.2,1.3,0.2,Iris-setosa
    ...
    5.8,2.7,3.9,1.2,Iris-versicolor
    6.0,2.7,5.1,1.6,Iris-versicolor
    5.4,3.0,4.5,1.5,Iris-versicolor
    ...
    6.8,3.0,5.5,2.1,Iris-virginica
    5.7,2.5,5.0,2.0,Iris-virginica
    5.8,2.8,5.1,2.4,Iris-virginica

You can easily generate a prediction following these steps:

.. code-block:: python

    from bigml.api import BigML

    api = BigML()

    source = api.create_source('./data/iris.csv')
    dataset = api.create_dataset(source)
    model = api.create_model(dataset)
    prediction = api.create_prediction(model, \
        {"petal width": 1.75, "petal length": 2.45})

You can then print the prediction using the ``pprint`` method:

.. code-block:: python

    >>> api.pprint(prediction)
    species for {"petal width": 1.75, "petal length": 2.45} is Iris-setosa

Certainly, any of the resources created in BigML can be configured using
several arguments described in the `API documentation <https://bigml.com/api>`_.
Any of these configuration arguments can be added to the ``create`` method
as a dictionary in the last optional argument of the calls:

.. code-block:: python

    from bigml.api import BigML

    api = BigML()

    source_args = {"name": "my source",
         "source_parser": {"missing_tokens": ["NULL"]}}
    source = api.create_source('./data/iris.csv', source_args)
    dataset_args = {"name": "my dataset"}
    dataset = api.create_dataset(source, dataset_args)
    model_args = {"objective_field": "species"}
    model = api.create_model(dataset, model_args)
    prediction_args = {"name": "my prediction"}
    prediction = api.create_prediction(model, \
        {"petal width": 1.75, "petal length": 2.45},
        prediction_args)

The ``iris`` dataset has a small number of instances, and usually will be
instantly created, so the ``api.create_`` calls will probably return the
finished resources outright. As BigML's API is asynchronous,
in general you will need to ensure
that objects are finished before using them by using ``api.ok``.

.. code-block:: python

    from bigml.api import BigML

    api = BigML()

    source = api.create_source('./data/iris.csv')
    api.ok(source)
    dataset = api.create_dataset(source)
    api.ok(dataset)
    model = api.create_model(dataset)
    api.ok(model)
    prediction = api.create_prediction(model, \
        {"petal width": 1.75, "petal length": 2.45})

Note that the prediction
call is not followed by the ``api.ok`` method. Predictions are so quick to be
generated that, unlike the
rest of resouces, will be generated synchronously as a finished object.

The example assumes that your objective field (the one you want to predict)
is the last field in the dataset. If that's not he case, you can explicitly
set the name of this field in the creation call using the ``objective_field``
argument:


.. code-block:: python

    from bigml.api import BigML

    api = BigML()

    source = api.create_source('./data/iris.csv')
    api.ok(source)
    dataset = api.create_dataset(source)
    api.ok(dataset)
    model = api.create_model(dataset, {"objective_field": "species"})
    api.ok(model)
    prediction = api.create_prediction(model, \
        {'sepal length': 5, 'sepal width': 2.5})


You can also generate an evaluation for the model by using:

.. code-block:: python

    test_source = api.create_source('./data/test_iris.csv')
    api.ok(test_source)
    test_dataset = api.create_dataset(test_source)
    api.ok(test_dataset)
    evaluation = api.create_evaluation(model, test_dataset)
    api.ok(evaluation)

If you set the ``storage`` argument in the ``api`` instantiation:

.. code-block:: python

    api = BigML(storage='./storage')

all the generated, updated or retrieved resources will be automatically
saved to the chosen directory.

Alternatively, you can use the ``export`` method to explicitly
download the JSON information
that describes any of your resources in BigML to a particular file:

.. code-block:: python

    api.export('model/5acea49a08b07e14b9001068',
               filename="my_dir/my_model.json")

This example downloads the JSON for the model and stores it in
the ``my_dir/my_model.json`` file.

In the case of models that can be represented in a `PMML` syntax, the
export method can be used to produce the corresponding `PMML` file.

.. code-block:: python

    api.export('model/5acea49a08b07e14b9001068',
               filename="my_dir/my_model.pmml",
               pmml=True)

You can also retrieve the last resource with some previously given tag:

.. code-block:: python

     api.export_last("foo",
                     resource_type="ensemble",
                     filename="my_dir/my_ensemble.json")

which selects the last ensemble that has a ``foo`` tag. This mechanism can
be specially useful when retrieving retrained models that have been created
with a shared unique keyword as tag.

For a descriptive overview of the steps that you will usually need to
follow to model
your data

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多