Computing dot-products, similarity measures, and distances between low- and high-dimensional vectors is ubiquitous in Machine Learning, Scientific Computing, Geo-Spatial Analysis, and Information Retrieval.
These algorithms generally have linear complexity in time, constant complexity in space, and are data-parallel.
In other words, it is easily parallelizable and vectorizable and often available in packages like BLAS and LAPACK, as well as higher-level numpy
and scipy
Python libraries.
Ironically, even with decades of evolution in compilers and numerical computing, most libraries can be 3-200x slower than hardware potential even on the most popular hardware, like 64-bit x86 and Arm CPUs.
SimSIMD attempts to fill that gap.
1️⃣ SimSIMD functions are practically as fast as memcpy
.
2️⃣ SimSIMD compiles to more platforms than NumPy (105 vs 35) and has more backends than most BLAS implementations.
SimSIMD provides over 100 SIMD-optimized kernels for various distance and similarity measures, accelerating search in USearch and several DBMS products. Implemented distance functions include:
Moreover, SimSIMD...
f64
, f32
, and f16
real & complex vectors.i8
integral and b8
binary vectors.Due to the high-level of fragmentation of SIMD support in different x86 CPUs, SimSIMD uses the names of select Intel CPU generations for its backends. They, however, also work on AMD CPUs. Intel Haswell is compatible with AMD Zen 1/2/3, while AMD Genoa Zen 4 covers AVX-512 instructions added to Intel Skylake and Ice Lake. You can learn more about the technical implementation details in the following blog-posts:
for
-loops.sqrt
calls with bit-hacks using Jan Kadlec's constant.PyArg_ParseTuple
for speed.Given 1000 embeddings from OpenAI Ada API with 1536 dimensions, running on the Apple M2 Pro Arm CPU with NEON support, here's how SimSIMD performs against conventional methods:
Kind | f32 improvement | f16 improvement | i8 improvement | Conventional method | SimSIMD |
---|---|---|---|---|---|
Inner Product | 2 x | 9 x | 18 x | numpy.inner | inner |
Cosine Distance | 32 x | 79 x | 133 x | scipy.spatial.distance.cosine | cosine |
Euclidean Distance ² | 5 x | 26 x | 17 x | scipy.spatial.distance.sqeuclidean | sqeuclidean |
Jensen-Shannon Divergence | 31 x | 53 x | scipy.spatial.distance.jensenshannon | jensenshannon |
On the Intel Sapphire Rapids platform, SimSIMD was benchmarked against auto-vectorized code using GCC 12.
GCC handles single-precision float
but might not be the best choice for int8
and _Float16
arrays, which have been part of the C language since 2011.
Kind | GCC 12 f32 | GCC 12 f16 | SimSIMD f16 | f16 improvement |
---|---|---|---|---|
Inner Product | 3,810 K/s | 192 K/s | 5,990 K/s | 31 x |
Cosine Distance | 3,280 K/s | 336 K/s | 6,880 K/s | 20 x |
Euclidean Distance ² | 4,620 K/s | 147 K/s | 5,320 K/s | 36 x |
Jensen-Shannon Divergence | 1,180 K/s | 18 K/s | 2,140 K/s | 118 x |
Broader Benchmarking Results:
The package is intended to replace the usage of numpy.inner
, numpy.dot
, and scipy.spatial.distance
.
Aside from drastic performance improvements, SimSIMD significantly improves accuracy in mixed precision setups.
NumPy and SciPy, processing i8
or f16
vectors, will use the same types for accumulators, while SimSIMD can combine i8
enumeration, i16
multiplication, and i32
accumulation to avoid overflows entirely.
The same applies to processing f16
values with f32
precision.
Use the following snippet to install SimSIMD and list available hardware acceleration options available on your machine:
pip install simsimd python -c "import simsimd; print(simsimd.get_capabilities())"
import simsimd import numpy as np vec1 = np.random.randn(1536).astype(np.float32) vec2 = np.random.randn(1536).astype(np.float32) dist = simsimd.cosine(vec1, vec2)
Supported functions include cosine
, inner
, sqeuclidean
, hamming
, and jaccard
.
Dot products are supported for both real and complex numbers:
vec1 = np.random.randn(768).astype(np.float64) + 1j * np.random.randn(768).astype(np.float64) vec2 = np.random.randn(768).astype(np.float64) + 1j * np.random.randn(768).astype(np.float64) dist = simsimd.dot(vec1.astype(np.complex128), vec2.astype(np.complex128)) dist = simsimd.dot(vec1.astype(np.complex64), vec2.astype(np.complex64)) dist = simsimd.vdot(vec1.astype(np.complex64), vec2.astype(np.complex64)) # conjugate, same as `np.vdot`
Unlike SciPy, SimSIMD allows explicitly stating the precision of the input vectors, which is especially useful for mixed-precision setups.
dist = simsimd.cosine(vec1, vec2, "i8") dist = simsimd.cosine(vec1, vec2, "f16") dist = simsimd.cosine(vec1, vec2, "f32") dist = simsimd.cosine(vec1, vec2, "f64")
It also allows using SimSIMD for half-precision complex numbers, which NumPy does not support.
For that, view data as continuous even-length np.float16
vectors and override type-resolution with complex32
string.
vec1 = np.random.randn(1536).astype(np.float16) vec2 = np.random.randn(1536).astype(np.float16) simd.dot(vec1, vec2, "complex32") simd.vdot(vec1, vec2, "complex32")
Every distance function can be used not only for one-to-one but also one-to-many and many-to-many distance calculations. For one-to-many:
vec1 = np.random.randn(1536).astype(np.float32) # rank 1 tensor batch1 = np.random.randn(1, 1536).astype(np.float32) # rank 2 tensor batch2 = np.random.randn(100, 1536).astype(np.float32) dist_rank1 = simsimd.cosine(vec1, batch2) dist_rank2 = simsimd.cosine(batch1, batch2)
All distance functions in SimSIMD can be used to compute many-to-many distances. For two batches of 100 vectors to compute 100 distances, one would call it like this:
batch1 = np.random.randn(100, 1536).astype(np.float32) batch2 = np.random.randn(100, 1536).astype(np.float32) dist = simsimd.cosine(batch1, batch2)
Input matrices must have identical shapes. This functionality isn't natively present in NumPy or SciPy, and generally requires creating intermediate arrays, which is inefficient and memory-consuming.
One can use SimSIMD to compute distances between all possible pairs of rows across two matrices (akin to scipy.spatial.distance.cdist
).
The resulting object will have a type DistancesTensor
, zero-copy compatible with NumPy and other libraries.
For two arrays of 10 and 1,000 entries, the resulting tensor will have 10,000 cells:
import numpy as np from simsimd import cdist, DistancesTensor matrix1 = np.random.randn(1000, 1536).astype(np.float32) matrix2 = np.random.randn(10, 1536).astype(np.float32) distances: DistancesTensor = simsimd.cdist(matrix1, matrix2, metric="cosine") # zero-copy distances_array: np.ndarray = np.array(distances, copy=True) # now managed by NumPy
By default, computations use a single CPU core.
To optimize and utilize all CPU cores on Linux systems, add the threads=0
argument.
Alternatively, specify a custom number of threads:
distances = simsimd.cdist(matrix1, matrix2, metric="cosine", threads=0)
Want to use it in Python with USearch?
You can wrap the raw C function pointers SimSIMD backends into a CompiledMetric
and pass it to USearch, similar to how it handles Numba's JIT-compiled code.
from usearch.index import Index, CompiledMetric, MetricKind, MetricSignature from simsimd import pointer_to_sqeuclidean, pointer_to_cosine, pointer_to_inner metric = CompiledMetric( pointer=pointer_to_cosine("f16"), kind=MetricKind.Cos, signature=MetricSignature.ArrayArraySize, ) index = Index(256, metric=metric)
To install, add the following to your Cargo.toml
:
[dependencies] simsimd = "..."
Before using the SimSIMD library, ensure you have imported the necessary traits and types into your Rust source file.
The library provides several traits for different distance/similarity kinds - SpatialSimilarity
, BinarySimilarity
, and ProbabilitySimilarity
.
use simsimd::SpatialSimilarity; fn main() { let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0]; let vector_b: Vec<f32> = vec![4.0, 5.0, 6.0]; // Compute the cosine similarity between vector_a and vector_b let cosine_similarity = f32::cosine(&vector_a, &vector_b) .expect("Vectors must be of the same length"); println!("Cosine Similarity: {}", cosine_similarity); // Compute the squared Euclidean distance between vector_a and vector_b let sq_euclidean_distance = f32::sqeuclidean(&vector_a, &vector_b) .expect("Vectors must be of the same length"); println!("Squared Euclidean Distance: {}", sq_euclidean_distance); }
Spatial similarity functions are available for f64
, f32
, f16
, and i8
types.
use simsimd::SpatialSimilarity; use simsimd::ComplexProducts; fn main() { let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0, 4.0]; let vector_b: Vec<f32> = vec![5.0, 6.0, 7.0, 8.0]; // Compute the inner product between vector_a and vector_b let inner_product = SpatialSimilarity::dot(&vector_a, &vector_b) .expect("Vectors must be of the same length"); println!("Inner Product: {}", inner_product); // Compute the complex inner product between complex_vector_a and complex_vector_b let complex_inner_product = ComplexProducts::dot(&vector_a, &vector_b) .expect("Vectors must be of the same length"); let complex_conjugate_inner_product = ComplexProducts::vdot(&vector_a,
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24 小时响应,生活工作无缝切换,提升50%效率!
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。