traffic_prediction

traffic_prediction

交通预测模型与数据集综合评估

这个项目对交通预测领域的多种模型和数据集进行了系统的比较分析。它汇总了近期发表的相关论文,详细介绍了METR-LA、PeMS-BAY等常用公开数据集。项目提供了各模型在主要数据集上的性能对比图表,并探讨了实验设置的差异。同时,它还整理了可公开获取的数据集及其来源信息,为交通预测研究提供了有价值的参考资料。

交通预测时间序列图神经网络深度学习PeMS数据集Github开源项目

This list can be considered outdated. For a more up-to-date list, check: https://github.com/lixus7/Time-Series-Works-Conferences

Traffic Prediction

Traffic prediction is the task of predicting future traffic measurements (e.g. volume, speed, etc.) in a road network (graph), using historical data (timeseries).

Things are usually better defined through exclusions, so here are similar things that I do not include:

  • NYC taxi and bike (and other similar datsets, like uber), are not included, because they tend to be represented as a grid, not a graph.

  • Predicting human mobility, either indoors, or through checking-in in Point of Interest (POI), or through a transport network.

  • Predicting trajectory.

  • Predicting the movement of individual cars through sensors for the purpose of self-driving car.

  • Traffic data imputations.

  • Traffic anomaly detections.

The papers are haphazardly selected.

Summary

A tabular summary of paper and publically available datasets. The paper is reverse chronologically sorted. NO GUARANTEE is made that this table is complete or accurate (please raise an issue if you spot any error).

papervenuepublished date# other datsetsMETR-LAPeMS-BAYPeMS-D7(M)PeMS-D7(L)PeMS-04PeMS-08LOOPSZ-taxiLos-loopPeMS-03PeMS-07PeMS-I-405PeMS-04(S)TOTAL open
TOTAL38286333322111195
G-SWaNIoTDI9 May 2311114
SCPTArXiv9 May 2311114
MP-WaveNetArXiv9 May 23112
GTSICLR4 May 211112
FASTGNNTII29 Jan 2111
HetGATJAIHC23 Jan 21112
GST-GATIEEE Access6 Jan 21112
CLGRNarXiv4 Jan 21311
DKFNSIGSPATIAL3 Nov 20112
STGAMCISP-BMEI17 Oct 20112
ARNNNat. Commun11 Sept 2011
ST-TrafficNetELECGJ9 Sept 20112
M2J. AdHoc1 Sept 20112
H-STGCNKDD23 Aug 200
SGMNJ. TRC20 Aug 20112
GDRNNNTU16 Aug 20112
ISTD-GCNarXiv10 Aug 20112
GTSUCONN3 Aug 20112
FC-GAGAarXiv30 Jul 20112
STGATIEEE Access22 Jul 20112
STNNT-ITS16 Jul 200
AGCRNarXiv6 Jul 20112
GWNN-LSTMJ. Phys. Conf. Ser.20 Jun 2011
A3T-GCNarXiv20 Jun 20112
TSE-SCTrans-GIS1 Jun 20112
MTGNNarXiv24 May 20112
ST-MetaNet+TKDE19 May 20112
STGNNWWW20 Apr 20112
STSeq2SeqarXiv6 Apr 20112
DSTGNNarXiv12 Mar 2011
RSTAGIoT-J19 Feb 20112
GMANAAAI7 Feb 2011
MRA-BGCNAAAI7 Feb 20112
STSGCNAAAI7 Feb 2011114
SLCNNAAAI7 Feb 201113
DDP-GCNarXiv7 Feb 200
R-SSMICLR13 Jan 2011
GWNV2arXiv11 Dec 19112
DeepGLONeurIPS8 Dec 19111
STGRATarXiv29 Nov 19112
TGC-LSTMT-ITS28 Nov 1911
DCRNN-RILTrustCom/BigDataSE31 Oct 19112
L-VGAEarXiv18 Oct 1911
T-GCNT-ITS22 Aug 19112
GWNIJCAI10 Aug 19112
ST-MetaNetKDD25 Jul 1911
MRes-RGNN-GAAAI17 Jul 19112
CDSAarXiv23 May 1911
STDGIICLR12 Apr 1911
ST-UNetarXiv13 Mar 191113
3D-TGCNarXiv3 Mar 191113
ASTGCNAAAI27 Jan 19112
PSNT-ITS17 Aug 1810
GaANUAI6 Aug 18211
Seq2Seq HybridKDD19 Jul 180
STGCNIJCAI13 Jul 18112
DCRNNICLR30 Apr 18112
SBU-LSTMUrbComp14 Aug 1711
GRUYAC5 Jan 1711

Performance

METR-LA MAE@60 mins

PeMS-BAY MAE@60 mins

NOTES: The experimental setttings may vary. But the common setting is:

  • Observation window = 12 timesteps

  • Prediction horizon = 1 timesteps

  • Prediction window = 12 timesteps

  • Metrics = MAE, RMSE, MAPE

  • Train, validation, and test splits = 7/1/2 OR 6/2/2

However, there are many caveats:

  • Some use different models for different prediction horizon.

  • Some use different batch size when testing previous models, as they increase the observation and prediction windows from previous studies, and have difficulties fitting it on GPU using the same batch size.

  • Regarding adjacency matrix, some derive it using Gaussian RBF from the coordinates, some use the actual connectivity, some simply learn it, and some use combinations.

  • Some might also add more context, such as time of day, or day of the week, or weather.

  • DeepGLO in particular, since it is treating it as a multi-channel timeseries without the spatial information, use rolling validation,

  • Many different treatment of missing datasets, from exclusion to imputations.

Dataset

Publically available datasets and where to find them.

编辑推荐精选

商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
下拉加载更多