traffic_prediction

traffic_prediction

交通预测模型与数据集综合评估

这个项目对交通预测领域的多种模型和数据集进行了系统的比较分析。它汇总了近期发表的相关论文,详细介绍了METR-LA、PeMS-BAY等常用公开数据集。项目提供了各模型在主要数据集上的性能对比图表,并探讨了实验设置的差异。同时,它还整理了可公开获取的数据集及其来源信息,为交通预测研究提供了有价值的参考资料。

交通预测时间序列图神经网络深度学习PeMS数据集Github开源项目

This list can be considered outdated. For a more up-to-date list, check: https://github.com/lixus7/Time-Series-Works-Conferences

Traffic Prediction

Traffic prediction is the task of predicting future traffic measurements (e.g. volume, speed, etc.) in a road network (graph), using historical data (timeseries).

Things are usually better defined through exclusions, so here are similar things that I do not include:

  • NYC taxi and bike (and other similar datsets, like uber), are not included, because they tend to be represented as a grid, not a graph.

  • Predicting human mobility, either indoors, or through checking-in in Point of Interest (POI), or through a transport network.

  • Predicting trajectory.

  • Predicting the movement of individual cars through sensors for the purpose of self-driving car.

  • Traffic data imputations.

  • Traffic anomaly detections.

The papers are haphazardly selected.

Summary

A tabular summary of paper and publically available datasets. The paper is reverse chronologically sorted. NO GUARANTEE is made that this table is complete or accurate (please raise an issue if you spot any error).

papervenuepublished date# other datsetsMETR-LAPeMS-BAYPeMS-D7(M)PeMS-D7(L)PeMS-04PeMS-08LOOPSZ-taxiLos-loopPeMS-03PeMS-07PeMS-I-405PeMS-04(S)TOTAL open
TOTAL38286333322111195
G-SWaNIoTDI9 May 2311114
SCPTArXiv9 May 2311114
MP-WaveNetArXiv9 May 23112
GTSICLR4 May 211112
FASTGNNTII29 Jan 2111
HetGATJAIHC23 Jan 21112
GST-GATIEEE Access6 Jan 21112
CLGRNarXiv4 Jan 21311
DKFNSIGSPATIAL3 Nov 20112
STGAMCISP-BMEI17 Oct 20112
ARNNNat. Commun11 Sept 2011
ST-TrafficNetELECGJ9 Sept 20112
M2J. AdHoc1 Sept 20112
H-STGCNKDD23 Aug 200
SGMNJ. TRC20 Aug 20112
GDRNNNTU16 Aug 20112
ISTD-GCNarXiv10 Aug 20112
GTSUCONN3 Aug 20112
FC-GAGAarXiv30 Jul 20112
STGATIEEE Access22 Jul 20112
STNNT-ITS16 Jul 200
AGCRNarXiv6 Jul 20112
GWNN-LSTMJ. Phys. Conf. Ser.20 Jun 2011
A3T-GCNarXiv20 Jun 20112
TSE-SCTrans-GIS1 Jun 20112
MTGNNarXiv24 May 20112
ST-MetaNet+TKDE19 May 20112
STGNNWWW20 Apr 20112
STSeq2SeqarXiv6 Apr 20112
DSTGNNarXiv12 Mar 2011
RSTAGIoT-J19 Feb 20112
GMANAAAI7 Feb 2011
MRA-BGCNAAAI7 Feb 20112
STSGCNAAAI7 Feb 2011114
SLCNNAAAI7 Feb 201113
DDP-GCNarXiv7 Feb 200
R-SSMICLR13 Jan 2011
GWNV2arXiv11 Dec 19112
DeepGLONeurIPS8 Dec 19111
STGRATarXiv29 Nov 19112
TGC-LSTMT-ITS28 Nov 1911
DCRNN-RILTrustCom/BigDataSE31 Oct 19112
L-VGAEarXiv18 Oct 1911
T-GCNT-ITS22 Aug 19112
GWNIJCAI10 Aug 19112
ST-MetaNetKDD25 Jul 1911
MRes-RGNN-GAAAI17 Jul 19112
CDSAarXiv23 May 1911
STDGIICLR12 Apr 1911
ST-UNetarXiv13 Mar 191113
3D-TGCNarXiv3 Mar 191113
ASTGCNAAAI27 Jan 19112
PSNT-ITS17 Aug 1810
GaANUAI6 Aug 18211
Seq2Seq HybridKDD19 Jul 180
STGCNIJCAI13 Jul 18112
DCRNNICLR30 Apr 18112
SBU-LSTMUrbComp14 Aug 1711
GRUYAC5 Jan 1711

Performance

METR-LA MAE@60 mins

PeMS-BAY MAE@60 mins

NOTES: The experimental setttings may vary. But the common setting is:

  • Observation window = 12 timesteps

  • Prediction horizon = 1 timesteps

  • Prediction window = 12 timesteps

  • Metrics = MAE, RMSE, MAPE

  • Train, validation, and test splits = 7/1/2 OR 6/2/2

However, there are many caveats:

  • Some use different models for different prediction horizon.

  • Some use different batch size when testing previous models, as they increase the observation and prediction windows from previous studies, and have difficulties fitting it on GPU using the same batch size.

  • Regarding adjacency matrix, some derive it using Gaussian RBF from the coordinates, some use the actual connectivity, some simply learn it, and some use combinations.

  • Some might also add more context, such as time of day, or day of the week, or weather.

  • DeepGLO in particular, since it is treating it as a multi-channel timeseries without the spatial information, use rolling validation,

  • Many different treatment of missing datasets, from exclusion to imputations.

Dataset

Publically available datasets and where to find them.

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多