traffic_prediction

traffic_prediction

交通预测模型与数据集综合评估

这个项目对交通预测领域的多种模型和数据集进行了系统的比较分析。它汇总了近期发表的相关论文,详细介绍了METR-LA、PeMS-BAY等常用公开数据集。项目提供了各模型在主要数据集上的性能对比图表,并探讨了实验设置的差异。同时,它还整理了可公开获取的数据集及其来源信息,为交通预测研究提供了有价值的参考资料。

交通预测时间序列图神经网络深度学习PeMS数据集Github开源项目

This list can be considered outdated. For a more up-to-date list, check: https://github.com/lixus7/Time-Series-Works-Conferences

Traffic Prediction

Traffic prediction is the task of predicting future traffic measurements (e.g. volume, speed, etc.) in a road network (graph), using historical data (timeseries).

Things are usually better defined through exclusions, so here are similar things that I do not include:

  • NYC taxi and bike (and other similar datsets, like uber), are not included, because they tend to be represented as a grid, not a graph.

  • Predicting human mobility, either indoors, or through checking-in in Point of Interest (POI), or through a transport network.

  • Predicting trajectory.

  • Predicting the movement of individual cars through sensors for the purpose of self-driving car.

  • Traffic data imputations.

  • Traffic anomaly detections.

The papers are haphazardly selected.

Summary

A tabular summary of paper and publically available datasets. The paper is reverse chronologically sorted. NO GUARANTEE is made that this table is complete or accurate (please raise an issue if you spot any error).

papervenuepublished date# other datsetsMETR-LAPeMS-BAYPeMS-D7(M)PeMS-D7(L)PeMS-04PeMS-08LOOPSZ-taxiLos-loopPeMS-03PeMS-07PeMS-I-405PeMS-04(S)TOTAL open
TOTAL38286333322111195
G-SWaNIoTDI9 May 2311114
SCPTArXiv9 May 2311114
MP-WaveNetArXiv9 May 23112
GTSICLR4 May 211112
FASTGNNTII29 Jan 2111
HetGATJAIHC23 Jan 21112
GST-GATIEEE Access6 Jan 21112
CLGRNarXiv4 Jan 21311
DKFNSIGSPATIAL3 Nov 20112
STGAMCISP-BMEI17 Oct 20112
ARNNNat. Commun11 Sept 2011
ST-TrafficNetELECGJ9 Sept 20112
M2J. AdHoc1 Sept 20112
H-STGCNKDD23 Aug 200
SGMNJ. TRC20 Aug 20112
GDRNNNTU16 Aug 20112
ISTD-GCNarXiv10 Aug 20112
GTSUCONN3 Aug 20112
FC-GAGAarXiv30 Jul 20112
STGATIEEE Access22 Jul 20112
STNNT-ITS16 Jul 200
AGCRNarXiv6 Jul 20112
GWNN-LSTMJ. Phys. Conf. Ser.20 Jun 2011
A3T-GCNarXiv20 Jun 20112
TSE-SCTrans-GIS1 Jun 20112
MTGNNarXiv24 May 20112
ST-MetaNet+TKDE19 May 20112
STGNNWWW20 Apr 20112
STSeq2SeqarXiv6 Apr 20112
DSTGNNarXiv12 Mar 2011
RSTAGIoT-J19 Feb 20112
GMANAAAI7 Feb 2011
MRA-BGCNAAAI7 Feb 20112
STSGCNAAAI7 Feb 2011114
SLCNNAAAI7 Feb 201113
DDP-GCNarXiv7 Feb 200
R-SSMICLR13 Jan 2011
GWNV2arXiv11 Dec 19112
DeepGLONeurIPS8 Dec 19111
STGRATarXiv29 Nov 19112
TGC-LSTMT-ITS28 Nov 1911
DCRNN-RILTrustCom/BigDataSE31 Oct 19112
L-VGAEarXiv18 Oct 1911
T-GCNT-ITS22 Aug 19112
GWNIJCAI10 Aug 19112
ST-MetaNetKDD25 Jul 1911
MRes-RGNN-GAAAI17 Jul 19112
CDSAarXiv23 May 1911
STDGIICLR12 Apr 1911
ST-UNetarXiv13 Mar 191113
3D-TGCNarXiv3 Mar 191113
ASTGCNAAAI27 Jan 19112
PSNT-ITS17 Aug 1810
GaANUAI6 Aug 18211
Seq2Seq HybridKDD19 Jul 180
STGCNIJCAI13 Jul 18112
DCRNNICLR30 Apr 18112
SBU-LSTMUrbComp14 Aug 1711
GRUYAC5 Jan 1711

Performance

METR-LA MAE@60 mins

PeMS-BAY MAE@60 mins

NOTES: The experimental setttings may vary. But the common setting is:

  • Observation window = 12 timesteps

  • Prediction horizon = 1 timesteps

  • Prediction window = 12 timesteps

  • Metrics = MAE, RMSE, MAPE

  • Train, validation, and test splits = 7/1/2 OR 6/2/2

However, there are many caveats:

  • Some use different models for different prediction horizon.

  • Some use different batch size when testing previous models, as they increase the observation and prediction windows from previous studies, and have difficulties fitting it on GPU using the same batch size.

  • Regarding adjacency matrix, some derive it using Gaussian RBF from the coordinates, some use the actual connectivity, some simply learn it, and some use combinations.

  • Some might also add more context, such as time of day, or day of the week, or weather.

  • DeepGLO in particular, since it is treating it as a multi-channel timeseries without the spatial information, use rolling validation,

  • Many different treatment of missing datasets, from exclusion to imputations.

Dataset

Publically available datasets and where to find them.

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多