这是以下论文的官方代码库:
FastViT: 使用结构重参数化的快速混合视觉Transformer Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu, Oncel Tuzel, Anurag Ranjan. ICCV 2023
所有模型都在ImageNet-1K上训练,并使用ModelBench应用在iPhone 12 Pro上进行基准测试。
conda create -n fastvit python=3.9 conda activate fastvit conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch pip install -r requirements.txt
要使用我们的模型,请参考以下代码片段:
import torch import models from timm.models import create_model from models.modules.mobileone import reparameterize_model # 从头开始训练/微调 model = create_model("fastvit_t8") # ... 训练 ... # 加载未融合的预训练检查点用于微调 # 或用于下游任务训练,如检测/分割 checkpoint = torch.load('/path/to/unfused_checkpoint.pth.tar') model.load_state_dict(checkpoint['state_dict']) # ... 训练 ... # 用于推理 model.eval() model_inf = reparameterize_model(model) # 在测试时使用model_inf
在ImageNet-1K上训练的模型
模型 | Top-1准确率 | 延迟 | PyTorch检查点 (url) | CoreML模型 |
---|---|---|---|---|
FastViT-T8 | 76.2 | 0.8 | T8(未融合) | fastvit_t8.mlpackage.zip |
FastViT-T12 | 79.3 | 1.2 | T12(未融合) | fastvit_t12.mlpackage.zip |
FastViT-S12 | 79.9 | 1.4 | S12(未融合) | fastvit_s12.mlpackage.zip |
FastViT-SA12 | 80.9 | 1.6 | SA12(未融合) | fastvit_sa12.mlpackage.zip |
FastViT-SA24 | 82.7 | 2.6 | SA24(未融合) | fastvit_sa24.mlpackage.zip |
FastViT-SA36 | 83.6 | 3.5 | SA36(未融合) | fastvit_sa36.mlpackage.zip |
FastViT-MA36 | 83.9 | 4.6 | MA36(未融合) | fastvit_ma36.mlpackage.zip |
使用知识蒸馏在ImageNet-1K上训练的模型。
模型 | Top-1 准确率 | 延迟 | Pytorch 检查点 (url) | CoreML 模型 |
---|---|---|---|---|
FastViT-T8 | 77.2 | 0.8 | T8(未融合) | fastvit_t8.mlpackage.zip |
FastViT-T12 | 80.3 | 1.2 | T12(未融合) | fastvit_t12.mlpackage.zip |
FastViT-S12 | 81.1 | 1.4 | S12(未融合) | fastvit_s12.mlpackage.zip |
FastViT-SA12 | 81.9 | 1.6 | SA12(未融合) | fastvit_sa12.mlpackage.zip |
FastViT-SA24 | 83.4 | 2.6 | SA24(未融合) | fastvit_sa24.mlpackage.zip |
FastViT-SA36 | 84.2 | 3.5 | SA36(未融合) | fastvit_sa36.mlpackage.zip |
FastViT-MA36 | 84.6 | 4.6 | MA36(未融合) | fastvit_ma36.mlpackage.zip |
所有模型的延迟都是在iPhone 12 Pro上使用ModelBench应用测量的。 如需更多详细信息,请联系James Gabriel和Jeff Zhu。 所有报告的数字都四舍五入到最接近的小数点。
下载ImageNet-1K数据集,并按以下结构组织数据:
/path/to/imagenet-1k/
train/
class1/
img1.jpeg
class2/
img2.jpeg
validation/
class1/
img3.jpeg
class2/
img4.jpeg
要训练FastViT模型的变体,请按照以下相应的命令操作:
<details> <summary> FastViT-T8 </summary># 无蒸馏
python -m torch.distributed.launch --nproc_per_node=8 train.py \
/path/to/ImageNet/dataset --model fastvit_t8 -b 128 --lr 1e-3 \
--native-amp --mixup 0.2 --output /path/to/save/results \
--input-size 3 256 256
# 有蒸馏
python -m torch.distributed.launch --nproc_per_node=8 train.py \
/path/to/ImageNet/dataset --model fastvit_t8 -b 128 --lr 1e-3 \
--native-amp --mixup 0.2 --output /path/to/save/results \
--input-size 3 256 256
--distillation-type "hard"
</details>
<details>
<summary>
FastViT-T12
</summary>
# 无蒸馏
python -m torch.distributed.launch --nproc_per_node=8 train.py \
/path/to/ImageNet/dataset --model fastvit_t12 -b 128 --lr 1e-3 \
--native-amp --mixup 0.2 --output /path/to/save/results \
--input-size 3 256 256
# 使用蒸馏
python -m torch.distributed.launch --nproc_per_node=8 train.py \
/path/to/ImageNet/dataset --model fastvit_t12 -b 128 --lr 1e-3 \
--native-amp --mixup 0.2 --output /path/to/save/results \
--input-size 3 256 256
--distillation-type "hard"
</details>
<details>
<summary>
FastViT-S12
</summary>
# 不使用蒸馏
python -m torch.distributed.launch --nproc_per_node=8 train.py \
/path/to/ImageNet/dataset --model fastvit_s12 -b 128 --lr 1e-3 \
--native-amp --mixup 0.2 --output /path/to/save/results \
--input-size 3 256 256
# 使用蒸馏
python -m torch.distributed.launch --nproc_per_node=8 train.py \
/path/to/ImageNet/dataset --model fastvit_s12 -b 128 --lr 1e-3 \
--native-amp --mixup 0.2 --output /path/to/save/results \
--input-size 3 256 256
--distillation-type "hard"
</details>
<details>
<summary>
FastViT-SA12
</summary>
# 不使用蒸馏
python -m torch.distributed.launch --nproc_per_node=8 train.py \
/path/to/ImageNet/dataset --model fastvit_sa12 -b 128 --lr 1e-3 \
--native-amp --mixup 0.2 --output /path/to/save/results \
--input-size 3 256 256 --drop-path 0.1
# 使用蒸馏
python -m torch.distributed.launch --nproc_per_node=8 train.py \
/path/to/ImageNet/dataset --model fastvit_sa12 -b 128 --lr 1e-3 \
--native-amp --output /path/to/save/results \
--input-size 3 256 256
--distillation-type "hard"
</details>
<details>
<summary>
FastViT-SA24
</summary>
# 不使用蒸馏
python -m torch.distributed.launch --nproc_per_node=8 train.py \
/path/to/ImageNet/dataset --model fastvit_sa24 -b 128 --lr 1e-3 \
--native-amp --mixup 0.2 --output /path/to/save/results \
--input-size 3 256 256 --drop-path 0.1
# 使用蒸馏
python -m torch.distributed.launch --nproc_per_node=8 train.py \
/path/to/ImageNet/dataset --model fastvit_sa24 -b 128 --lr 1e-3 \
--native-amp --output /path/to/save/results \
--input-size 3 256 256 --drop-path 0.05 \
--distillation-type "hard"
</details>
<details>
<summary>
FastViT-SA36
</summary>
# 不使用蒸馏
python -m torch.distributed.launch --nproc_per_node=8 train.py \
/path/to/ImageNet/dataset --model fastvit_sa36 -b 128 --lr 1e-3 \
--native-amp --mixup 0.2 --output /path/to/save/results \
--input-size 3 256 256 --drop-path 0.2
# 使用蒸馏
python -m torch.distributed.launch --nproc_per_node=8 train.py \
/path/to/ImageNet/dataset --model fastvit_sa36 -b 128 --lr 1e-3 \
--native-amp --output /path/to/save/results \
--input-size 3 256 256 --drop-path 0.1 \
--distillation-type "hard"
</details>
<details>
<summary>
FastViT-MA36
</summary>
# 不使用蒸馏
python -m torch.distributed.launch --nproc_per_node=8 train.py \
/path/to/ImageNet/dataset --model fastvit_t8 -b 128 --lr 1e-3 \
--native-amp --output /path/to/save/results \
--input-size 3 256 256 --drop-path 0.35
# 使用蒸馏
python -m torch.distributed.launch --nproc_per_node=8 train.py \
/path/to/ImageNet/dataset --model fastvit_t8 -b 128 --lr 1e-3 \
--native-amp --output /path/to/save/results \
--input-size 3 256 256 --drop-path 0.2 \
--distillation-type "hard"
</details>
要在ImageNet上运行评估,请按照以下示例命令操作:
<details> <summary> FastViT-T8 </summary># 评估未融合的检查点
python validate.py /path/to/ImageNet/dataset --model fastvit_t8 \
--checkpoint /path/to/pretrained_checkpoints/fastvit_t8.pth.tar
# 评估融合的检查点
python validate.py /path/to/ImageNet/dataset --model fastvit_t8 \
--checkpoint /path/to/pretrained_checkpoints/fastvit_t8_reparam.pth.tar \
--use-inference-mode
</details>
要从PyTorch检查点导出CoreML包文件,请按照以下示例命令操作:
<details> <summary> FastViT-T8 </summary>python export_model.py --variant fastvit_t8 --output-dir /path/to/save/exported_model \
--checkpoint /path/to/pretrained_checkpoints/fastvit_t8_reparam.pth.tar
</details>
@inproceedings{vasufastvit2023,
author = {Pavan Kumar Anasosalu Vasu and James Gabriel and Jeff Zhu and Oncel Tuzel and Anurag Ranjan},
title = {FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
year = {2023}
}
我们的代码库是基于多个开源贡献构建的,详情请参阅ACKNOWLEDGEMENTS。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号