This is the official PyTorch implementation of "Total-Recon: Deformable Scene Reconstruction for Embodied View Synthesis".
<a href="https://andrewsonga.github.io">Chonghyuk Song</a>, <a href="https://gengshan-y.github.io">Gengshan Yang</a>, <a href="https://dunbar12138.github.io">Kangle Deng</a>, <a href="https://www.cs.cmu.edu/~junyanz/">Jun-Yan Zhu</a>, <a href="https://www.cs.cmu.edu/~deva/">Deva Ramanan</a> <br> Carnegie Mellon University <br> ICCV 2023
Given a long video of deformable objects captured by a handheld RGBD sensor, Total-Recon renders the scene from novel camera trajectories derived from in-scene motion of actors: (1) egocentric cameras that simulate the point-of-view of a target actor (such as the pet) and (2) 3rd-person (or pet) cameras that follow the actor from behind. Our method also enables (3) 3D video filters that attach virtual 3D assets to the actor. Total-Recon achieves this by reconstructing the geometry, appearance, and root-body and articulated motion of each deformable object in the scene as well as the background.
We plan to release our code in the following 4 stages:
Before a recent commit there was a bug in the code that set the default $\lambda = 1$ (the interpolation factor of the EMA filter for updating object bounds and near-far plane: new state = (1 - $\lambda$) $\times$ signal + $\lambda$ $\times$ old state). This prevents these bounds from being updated at all during training and may result in failed reconstruction. The default value has now been corrected to 0.0 and the code now correctly updates the bounds and near-far plane during training. Please pull the latest version of the codebase for a bug-free experience.
(1) Clone repo (including submodules):
git clone https://github.com/andrewsonga/Total-Recon.git --recursive
# This step is REQUIRED for all subsequent steps!
cd Total-Recon
(2) Install conda env:
conda env create -f misc/totalrecon-cu113.yml
conda activate totalrecon-cu113
(3) Install submodules:
pip install -e third_party/pytorch3d
pip install -e third_party/kmeans_pytorch
python -m pip install detectron2 -f \
https://dl.fbaipublicfiles.com/detectron2/wheels/cu113/torch1.10/index.html
(4) Install ffmpeg:
apt-get install ffmpeg
(5) Download the pre-trained VCN optical flow model for data preprocessing (instructions are taken from BANMo):
mkdir lasr_vcn
wget https://www.dropbox.com/s/bgsodsnnbxdoza3/vcn_rob.pth -O ./lasr_vcn/vcn_rob.pth
The following steps (1) ~ (4) for downloading, preprocessing, and formatting RGBD sequences only pertains to Total-Recon's dataset. <ins><span style="color: orange;">To apply Total-Recon on your own RGBD videos, please follow the instructions</span></ins> here.
(1) Download and untar the raw data:
bash download_rawdata.sh
# untar raw data
tar -xzvf totalrecon_rawdata.tar.gz
(2) Save the raw data under raw/:
src_dir=totalrecon_rawdata
bash place_rawdata.sh $src_dir
###############################################################
# argv[1]: The directory inside Total-Recon/ where the downloaded raw data is stored
(3) Preprocess raw data (takes around a couple of hours per sequence):
Multi-actor sequences:
# e.g.
prefix=humandog-stereo000; gpu=0
bash preprocess/preprocess_rawdata_stereo_maskcamgiven_multiactor.sh $prefix $gpu
###############################################################
# argv[1]: prefix of the preprocessed data folders under "database/DAVIS/JPEGImages/" (minus suffices such as "-leftcam", "-rightcam", "-human", "-animal", "-bkgd", and "-uncropped")
# argv[2]: gpu number (0, 1, 2, ...)
Uni-actor sequences:
# e.g.
prefix=cat2-stereo000; ishuman='n'; gpu=0
bash preprocess/preprocess_rawdata_stereo_maskcamgiven_uniactor.sh $prefix $ishuman $gpu
###############################################################
# argv[1]: prefix of the preprocessed data folders under "database/DAVIS/JPEGImages/" (minus suffices such as "-leftcam", "-rightcam", and "-bkgd")
# argv[2]: human or not, where `y` denotes human and `n` denotes quadreped
# argv[3]: gpu number (0, 1, 2, ...)
(4) [NOT REQUIRED FOR INFERENCE] Format preprocessed data for training:
Multi-actor sequences:
# e.g.
prefix=humandog-stereo000; gpu=0
bash preprocess/format_processeddata_stereo_multiactor.sh $prefix $gpu
###############################################################
# argv[1]: prefix of the preprocessed data folders under "database/DAVIS/JPEGImages/" (minus suffices such as "-leftcam", "-rightcam", "-human", "-animal", "-bkgd", and "-uncropped")
# argv[2]: gpu number (0, 1, 2, ...)
Uni-actor sequences:
# e.g.
prefix=cat2-stereo000; gpu=0
bash preprocess/format_processeddata_stereo_uniactor.sh $prefix $gpu
###############################################################
# argv[1]: prefix of the preprocessed data folders under "database/DAVIS/JPEGImages/" (minus suffices such as "-leftcam", "-rightcam", and "-bkgd")
# argv[2]: gpu number (0, 1, 2, ...)
(1) Download the pre-optimized models and untar them.
bash download_models.sh
tar -xzvf totalrecon_models.tar.gz
(2) Appropriately relocate the pre-optimized models:
# Place the pre-optimized models under logdir/
# argv[1]: The directory inside Total-Recon where the downloaded pre-optimized models are stored
src_dir=totalrecon_models
bash place_models.sh $src_dir
To run the 3D video filter and to be able to visualize flying embodied-view cameras, purchase and download 3D models in .obj format for 1) the unicorn horn, and 2) the Canon camera.
Rename the .obj file for the camera mesh to camera.obj, then place the file camera.obj and unzipped folder UnicornHorn_OBJ inside mesh_material.
To train Total-Recon on our provided dataset, run per-object pretraining and joint-finetuning as follows:
# change appropriately (e.g. "humancat-stereo000" or "cat2-stereo000")
prefix=humandog-stereo000
gpus=0,1,2,3 # gpu ids for training
addr=10001 # master port for torch.distributed
bash train_$prefix.sh $gpus $addr
To train Total-Recon on your own videos, run one of the following commands:
# for multi-actor sequences
prefix=humancat-mono000
gpus=0,1,2,3
addr=10001
bash train_multiactor.sh $gpus $addr $prefix
# for uni-actor sequences
prefix=human2-mono000
gpus=0,1,2,3
addr=10001
use_human="" # "" (for human actors) / "no" (for animal actors)
bash train_uniactor.sh $gpus $addr $prefix "$use_human"
Before inference or evaluation can be done, extract the object-level meshes and root-body poses from the trained model. This only needs to be done once per model:
# argv[1]: gpu number (0, 1, 2, ...)
# argv[2]: folder name of the trained model inside logdir/
seqname=humandog-stereo000-leftcam-jointft # (appropriately rename `seqname`)
bash extract_fgbg.sh $gpu $seqname
Before inference or evaluation can be done, copy the left-right camera registration data from the raw data directory to the trained model directory:
prefix=humandog-stereo000 # (appropriately rename `prefix`)
seqname=$prefix-leftcam-jointft # directory name of trained model
# for uniactor sequences
cp raw/$prefix-leftcam/normrefcam2secondcam.npy logdir/$seqname/
# for multiactor sequences
cp raw/$prefix-human-leftcam/normrefcam2secondcam.npy logdir/$seqname/
(takes around a few hours)
The rendered videos will be saved as nvs-fpsview-*.mp4 inside logdir/$seqname/
bash scripts/render_nvs_fgbg_fps.sh $gpu $seqname "$add_args"
<details><summary>per-sequence arguments <code>(add_args)</code></summary>
seqname=humandog-stereo000-leftcam-jointft
add_args="--fg_obj_index 1 --asset_obj_index 1 --fg_normalbase_vertex_index 96800 --fg_downdir_vertex_index 1874 --asset_scale 0.003 --firstpersoncam_offset_z 0.05 --firstpersoncam_offsetabt_xaxis 15 --asset_offset_z -0.05 --scale_fps 0.50"
seqname=humancat-stereo000-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --fg_normalbase_vertex_index 150324 --fg_downdir_vertex_index 150506 --asset_scale 0.003 --firstpersoncam_offset_y 0.05 --firstpersoncam_offsetabt_xaxis 25 --firstpersoncam_offsetabt_yaxis 15 --firstpersoncam_offsetabt_zaxis 5 --fix_frame 50 --scale_fps 0.75"
seqname=cat1-stereo000-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --fg_normalbase_vertex_index 204713 --fg_downdir_vertex_index 204830 --asset_scale 0.003 --firstpersoncam_offset_z 0.05 --firstpersoncam_offsetabt_yaxis -20 --firstpersoncam_offsetabt_zaxis 10 --asset_offset_z -0.05 --scale_fps 0.75"
seqname=cat1-stereo001-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --fg_normalbase_vertex_index 34175 --fg_downdir_vertex_index 6043 --asset_scale 0.003 --firstpersoncam_offset_z 0.13 --firstpersoncam_offsetabt_xaxis 35 --firstpersoncam_offsetabt_yaxis -20 --firstpersoncam_offsetabt_zaxis -15 --scale_fps 0.75"
seqname=cat2-stereo000-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --fg_normalbase_vertex_index 338844 --fg_downdir_vertex_index 166318 --asset_scale 0.003 --firstpersoncam_offset_z 0.05 --firstpersoncam_offsetabt_xaxis 10 --firstpersoncam_offsetabt_yaxis 10 --asset_offset_z -0.05 --scale_fps 0.75"
seqname=cat2-stereo001-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --fg_normalbase_vertex_index 308732 --fg_downdir_vertex_index 309449 --asset_scale 0.003 --firstpersoncam_offset_z 0.05 --firstpersoncam_offsetabt_xaxis 20 --firstpersoncam_offsetabt_yaxis 20 --firstpersoncam_offsetabt_zaxis -20 --scale_fps 0.75"
seqname=cat3-stereo000-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --fg_normalbase_vertex_index 105919 --fg_downdir_vertex_index 246367 --asset_scale 0.003 --firstpersoncam_offset_z 0.05 --firstpersoncam_offsetabt_xaxis 20 --firstpersoncam_offsetabt_zaxis 10 --asset_offset_z -0.05 --scale_fps 0.75"
seqname=dog1-stereo000-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --fg_normalbase_vertex_index 159244 --fg_downdir_vertex_index 93456 --asset_scale 0.003 --firstpersoncam_offset_z 0.05 --firstpersoncam_offsetabt_xaxis 35 --firstpersoncam_offsetabt_yaxis 30 --firstpersoncam_offsetabt_zaxis 20 --asset_offset_z -0.05 --scale_fps 0.75"
seqname=dog1-stereo001-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --fg_normalbase_vertex_index 227642 --fg_downdir_vertex_index 117789 --asset_scale 0.003 --firstpersoncam_offset_z 0.035 --firstpersoncam_offsetabt_xaxis 45 --scale_fps 0.75"
seqname=human1-stereo000-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --fg_normalbase_vertex_index 161978 --fg_downdir_vertex_index 37496 --asset_scale 0.003 --firstpersoncam_offset_z 0.05 --firstpersoncam_offsetabt_xaxis 10 --firstpersoncam_offsetabt_yaxis 10 --asset_offset_z -0.05 --scale_fps 0.75"
seqname=human2-stereo000-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --fg_normalbase_vertex_index 114756 --fg_downdir_vertex_index 114499 --asset_scale 0.003 --firstpersoncam_offset_z 0.05 --firstpersoncam_offsetabt_xaxis 15 --firstpersoncam_offsetabt_yaxis 20 --asset_offset_z -0.05 --scale_fps 0.75"
</details>
<br>
(takes around a few hours)
The rendered videos will be saved as nvs-tpsview-*.mp4 inside logdir/$seqname/
bash scripts/render_nvs_fgbg_tps.sh $gpu $seqname $add_args
<details><summary>per-sequence arguments <code>(add_args)</code></summary>
seqname=humandog-stereo000-leftcam-jointft
add_args="--fg_obj_index 1 --asset_obj_index 1 --thirdpersoncam_offset_y 0.25 --thirdpersoncam_offset_z -0.80 --asset_scale 0.003 --scale_tps 0.70"
seqname=humancat-stereo000-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --thirdpersoncam_fgmeshcenter_elevate_y 1.00 --thirdpersoncam_offset_x -0.05 --thirdpersoncam_offset_y 0.15


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办 公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障 碍,让全世界的语言交流不再有国界。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号