This is the official PyTorch implementation of "Total-Recon: Deformable Scene Reconstruction for Embodied View Synthesis".
<a href="https://andrewsonga.github.io">Chonghyuk Song</a>, <a href="https://gengshan-y.github.io">Gengshan Yang</a>, <a href="https://dunbar12138.github.io">Kangle Deng</a>, <a href="https://www.cs.cmu.edu/~junyanz/">Jun-Yan Zhu</a>, <a href="https://www.cs.cmu.edu/~deva/">Deva Ramanan</a> <br> Carnegie Mellon University <br> ICCV 2023
Given a long video of deformable objects captured by a handheld RGBD sensor, Total-Recon renders the scene from novel camera trajectories derived from in-scene motion of actors: (1) egocentric cameras that simulate the point-of-view of a target actor (such as the pet) and (2) 3rd-person (or pet) cameras that follow the actor from behind. Our method also enables (3) 3D video filters that attach virtual 3D assets to the actor. Total-Recon achieves this by reconstructing the geometry, appearance, and root-body and articulated motion of each deformable object in the scene as well as the background.
We plan to release our code in the following 4 stages:
Before a recent commit there was a bug in the code that set the default $\lambda = 1$ (the interpolation factor of the EMA filter for updating object bounds and near-far plane: new state = (1 - $\lambda$) $\times$ signal + $\lambda$ $\times$ old state). This prevents these bounds from being updated at all during training and may result in failed reconstruction. The default value has now been corrected to 0.0 and the code now correctly updates the bounds and near-far plane during training. Please pull the latest version of the codebase for a bug-free experience.
(1) Clone repo (including submodules):
git clone https://github.com/andrewsonga/Total-Recon.git --recursive
# This step is REQUIRED for all subsequent steps!
cd Total-Recon
(2) Install conda env:
conda env create -f misc/totalrecon-cu113.yml
conda activate totalrecon-cu113
(3) Install submodules:
pip install -e third_party/pytorch3d
pip install -e third_party/kmeans_pytorch
python -m pip install detectron2 -f \
https://dl.fbaipublicfiles.com/detectron2/wheels/cu113/torch1.10/index.html
(4) Install ffmpeg:
apt-get install ffmpeg
(5) Download the pre-trained VCN optical flow model for data preprocessing (instructions are taken from BANMo):
mkdir lasr_vcn
wget https://www.dropbox.com/s/bgsodsnnbxdoza3/vcn_rob.pth -O ./lasr_vcn/vcn_rob.pth
The following steps (1) ~ (4) for downloading, preprocessing, and formatting RGBD sequences only pertains to Total-Recon's dataset. <ins><span style="color: orange;">To apply Total-Recon on your own RGBD videos, please follow the instructions</span></ins> here.
(1) Download and untar the raw data:
bash download_rawdata.sh
# untar raw data
tar -xzvf totalrecon_rawdata.tar.gz
(2) Save the raw data under raw/
:
src_dir=totalrecon_rawdata
bash place_rawdata.sh $src_dir
###############################################################
# argv[1]: The directory inside Total-Recon/ where the downloaded raw data is stored
(3) Preprocess raw data (takes around a couple of hours per sequence):
Multi-actor sequences:
# e.g.
prefix=humandog-stereo000; gpu=0
bash preprocess/preprocess_rawdata_stereo_maskcamgiven_multiactor.sh $prefix $gpu
###############################################################
# argv[1]: prefix of the preprocessed data folders under "database/DAVIS/JPEGImages/" (minus suffices such as "-leftcam", "-rightcam", "-human", "-animal", "-bkgd", and "-uncropped")
# argv[2]: gpu number (0, 1, 2, ...)
Uni-actor sequences:
# e.g.
prefix=cat2-stereo000; ishuman='n'; gpu=0
bash preprocess/preprocess_rawdata_stereo_maskcamgiven_uniactor.sh $prefix $ishuman $gpu
###############################################################
# argv[1]: prefix of the preprocessed data folders under "database/DAVIS/JPEGImages/" (minus suffices such as "-leftcam", "-rightcam", and "-bkgd")
# argv[2]: human or not, where `y` denotes human and `n` denotes quadreped
# argv[3]: gpu number (0, 1, 2, ...)
(4) [NOT REQUIRED FOR INFERENCE] Format preprocessed data for training:
Multi-actor sequences:
# e.g.
prefix=humandog-stereo000; gpu=0
bash preprocess/format_processeddata_stereo_multiactor.sh $prefix $gpu
###############################################################
# argv[1]: prefix of the preprocessed data folders under "database/DAVIS/JPEGImages/" (minus suffices such as "-leftcam", "-rightcam", "-human", "-animal", "-bkgd", and "-uncropped")
# argv[2]: gpu number (0, 1, 2, ...)
Uni-actor sequences:
# e.g.
prefix=cat2-stereo000; gpu=0
bash preprocess/format_processeddata_stereo_uniactor.sh $prefix $gpu
###############################################################
# argv[1]: prefix of the preprocessed data folders under "database/DAVIS/JPEGImages/" (minus suffices such as "-leftcam", "-rightcam", and "-bkgd")
# argv[2]: gpu number (0, 1, 2, ...)
(1) Download the pre-optimized models and untar them.
bash download_models.sh
tar -xzvf totalrecon_models.tar.gz
(2) Appropriately relocate the pre-optimized models:
# Place the pre-optimized models under logdir/
# argv[1]: The directory inside Total-Recon where the downloaded pre-optimized models are stored
src_dir=totalrecon_models
bash place_models.sh $src_dir
To run the 3D video filter and to be able to visualize flying embodied-view cameras, purchase and download 3D models in .obj format for 1) the unicorn horn, and 2) the Canon camera.
Rename the .obj file for the camera mesh to camera.obj
, then place the file camera.obj
and unzipped folder UnicornHorn_OBJ
inside mesh_material
.
To train Total-Recon on our provided dataset, run per-object pretraining and joint-finetuning as follows:
# change appropriately (e.g. "humancat-stereo000" or "cat2-stereo000")
prefix=humandog-stereo000
gpus=0,1,2,3 # gpu ids for training
addr=10001 # master port for torch.distributed
bash train_$prefix.sh $gpus $addr
To train Total-Recon on your own videos, run one of the following commands:
# for multi-actor sequences
prefix=humancat-mono000
gpus=0,1,2,3
addr=10001
bash train_multiactor.sh $gpus $addr $prefix
# for uni-actor sequences
prefix=human2-mono000
gpus=0,1,2,3
addr=10001
use_human="" # "" (for human actors) / "no" (for animal actors)
bash train_uniactor.sh $gpus $addr $prefix "$use_human"
Before inference or evaluation can be done, extract the object-level meshes and root-body poses from the trained model. This only needs to be done once per model:
# argv[1]: gpu number (0, 1, 2, ...)
# argv[2]: folder name of the trained model inside logdir/
seqname=humandog-stereo000-leftcam-jointft # (appropriately rename `seqname`)
bash extract_fgbg.sh $gpu $seqname
Before inference or evaluation can be done, copy the left-right camera registration data from the raw data directory to the trained model directory:
prefix=humandog-stereo000 # (appropriately rename `prefix`)
seqname=$prefix-leftcam-jointft # directory name of trained model
# for uniactor sequences
cp raw/$prefix-leftcam/normrefcam2secondcam.npy logdir/$seqname/
# for multiactor sequences
cp raw/$prefix-human-leftcam/normrefcam2secondcam.npy logdir/$seqname/
(takes around a few hours)
The rendered videos will be saved as nvs-fpsview-*.mp4
inside logdir/$seqname/
bash scripts/render_nvs_fgbg_fps.sh $gpu $seqname "$add_args"
<details><summary>per-sequence arguments <code>(add_args)</code></summary>
seqname=humandog-stereo000-leftcam-jointft
add_args="--fg_obj_index 1 --asset_obj_index 1 --fg_normalbase_vertex_index 96800 --fg_downdir_vertex_index 1874 --asset_scale 0.003 --firstpersoncam_offset_z 0.05 --firstpersoncam_offsetabt_xaxis 15 --asset_offset_z -0.05 --scale_fps 0.50"
seqname=humancat-stereo000-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --fg_normalbase_vertex_index 150324 --fg_downdir_vertex_index 150506 --asset_scale 0.003 --firstpersoncam_offset_y 0.05 --firstpersoncam_offsetabt_xaxis 25 --firstpersoncam_offsetabt_yaxis 15 --firstpersoncam_offsetabt_zaxis 5 --fix_frame 50 --scale_fps 0.75"
seqname=cat1-stereo000-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --fg_normalbase_vertex_index 204713 --fg_downdir_vertex_index 204830 --asset_scale 0.003 --firstpersoncam_offset_z 0.05 --firstpersoncam_offsetabt_yaxis -20 --firstpersoncam_offsetabt_zaxis 10 --asset_offset_z -0.05 --scale_fps 0.75"
seqname=cat1-stereo001-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --fg_normalbase_vertex_index 34175 --fg_downdir_vertex_index 6043 --asset_scale 0.003 --firstpersoncam_offset_z 0.13 --firstpersoncam_offsetabt_xaxis 35 --firstpersoncam_offsetabt_yaxis -20 --firstpersoncam_offsetabt_zaxis -15 --scale_fps 0.75"
seqname=cat2-stereo000-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --fg_normalbase_vertex_index 338844 --fg_downdir_vertex_index 166318 --asset_scale 0.003 --firstpersoncam_offset_z 0.05 --firstpersoncam_offsetabt_xaxis 10 --firstpersoncam_offsetabt_yaxis 10 --asset_offset_z -0.05 --scale_fps 0.75"
seqname=cat2-stereo001-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --fg_normalbase_vertex_index 308732 --fg_downdir_vertex_index 309449 --asset_scale 0.003 --firstpersoncam_offset_z 0.05 --firstpersoncam_offsetabt_xaxis 20 --firstpersoncam_offsetabt_yaxis 20 --firstpersoncam_offsetabt_zaxis -20 --scale_fps 0.75"
seqname=cat3-stereo000-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --fg_normalbase_vertex_index 105919 --fg_downdir_vertex_index 246367 --asset_scale 0.003 --firstpersoncam_offset_z 0.05 --firstpersoncam_offsetabt_xaxis 20 --firstpersoncam_offsetabt_zaxis 10 --asset_offset_z -0.05 --scale_fps 0.75"
seqname=dog1-stereo000-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --fg_normalbase_vertex_index 159244 --fg_downdir_vertex_index 93456 --asset_scale 0.003 --firstpersoncam_offset_z 0.05 --firstpersoncam_offsetabt_xaxis 35 --firstpersoncam_offsetabt_yaxis 30 --firstpersoncam_offsetabt_zaxis 20 --asset_offset_z -0.05 --scale_fps 0.75"
seqname=dog1-stereo001-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --fg_normalbase_vertex_index 227642 --fg_downdir_vertex_index 117789 --asset_scale 0.003 --firstpersoncam_offset_z 0.035 --firstpersoncam_offsetabt_xaxis 45 --scale_fps 0.75"
seqname=human1-stereo000-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --fg_normalbase_vertex_index 161978 --fg_downdir_vertex_index 37496 --asset_scale 0.003 --firstpersoncam_offset_z 0.05 --firstpersoncam_offsetabt_xaxis 10 --firstpersoncam_offsetabt_yaxis 10 --asset_offset_z -0.05 --scale_fps 0.75"
seqname=human2-stereo000-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --fg_normalbase_vertex_index 114756 --fg_downdir_vertex_index 114499 --asset_scale 0.003 --firstpersoncam_offset_z 0.05 --firstpersoncam_offsetabt_xaxis 15 --firstpersoncam_offsetabt_yaxis 20 --asset_offset_z -0.05 --scale_fps 0.75"
</details>
<br>
(takes around a few hours)
The rendered videos will be saved as nvs-tpsview-*.mp4
inside logdir/$seqname/
bash scripts/render_nvs_fgbg_tps.sh $gpu $seqname $add_args
<details><summary>per-sequence arguments <code>(add_args)</code></summary>
seqname=humandog-stereo000-leftcam-jointft
add_args="--fg_obj_index 1 --asset_obj_index 1 --thirdpersoncam_offset_y 0.25 --thirdpersoncam_offset_z -0.80 --asset_scale 0.003 --scale_tps 0.70"
seqname=humancat-stereo000-leftcam-jointft
add_args="--fg_obj_index 0 --asset_obj_index 0 --thirdpersoncam_fgmeshcenter_elevate_y 1.00 --thirdpersoncam_offset_x -0.05 --thirdpersoncam_offset_y 0.15
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多 元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写 、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工 具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内 容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号