transfomers-silicon-research

transfomers-silicon-research

Transformer模型硬件实现研究进展

本项目汇集了Transformer模型硬件实现的研究资料,包括BERT及其优化方案。内容涵盖算法-硬件协同设计、神经网络加速器、量化和剪枝等技术。项目提供了详细的论文列表,涉及FPGA实现、功耗优化等多个领域,全面展示了Transformer硬件加速的最新研究进展。

TransformerBERT自然语言处理硬件加速神经网络Github开源项目

Transformer Models Silicon Research

Research and Materials on Hardware implementation of Transformer Models

<!-- <p align="center"> <img src="https://img.shields.io/badge/-WIP-ff69b4?style=flat-square"/> </p> <p align="center"> <img src="https://img.shields.io/badge/Progress-%2599-ef6c00?labelColor=1565c0&style=flat-square"/> </p> -->

How to Contribute

You can add new papers via pull requests, Please check data/papers.yaml and if your paper is not in list, add entity at the last item and create pull request.

Transformer and BERT Model

  • BERT is a method of pre-training language representations, meaning that we train a general-purpose language understanding model on a large text corpus (like Wikipedia) and then use that model for downstream NLP tasks.

  • BERT was created and published in 2018 by Jacob Devlin and his colleagues from Google. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks.

<p align="center"> <img src="./data/img/BERT-ARCH.png" width='480' /> </p>
  • BERT is a Transformer-based model.
    • The architecture of BERT is similar to the original Transformer model, except that BERT has two separate Transformer models: one for the left-to-right direction (the “encoder”) and one for the right-to-left direction (the “encoder”).
    • The output of each model is the hidden state output by the final Transformer layer. The two models are pre-trained jointly on a large corpus of unlabeled text. The pre-training task is a simple and straightforward masked language modeling objective.
    • The pre-trained BERT model can then be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications.

Reference Papers

1. Attention Is All You Need

DOI-Link PDF-Download

Code-Link Code-Link

<details> <summary><img src="https://img.shields.io/badge/ABSTRACT-9575cd?&style=plastic"/></summary> The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 Englishto-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data. </details>

2. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

DOI-Link PDF-Download Code-Link Code-Link

<details> <summary><img src="https://img.shields.io/badge/ABSTRACT-9575cd?&style=plastic"/></summary> We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pretrain deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be finetuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial taskspecific architecture modifications. <br> BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement). </details>

Hardware Research

2018

Algorithm-Hardware Co-Design of Single Shot Detector for Fast Object Detection on FPGAs

DOI-Link

SparseNN: An energy-efficient neural network accelerator exploiting input and output sparsity

DOI-Link PDF-Link


2019

A Power Efficient Neural Network Implementation on Heterogeneous FPGA and GPU Devices

DOI-Link

A Simple and Effective Approach to Automatic Post-Editing with Transfer Learning

DOI-Link

An Evaluation of Transfer Learning for Classifying Sales Engagement Emails at Large Scale

DOI-Link

MAGNet: A Modular Accelerator Generator for Neural Networks

DOI-Link PDF-Link

mRNA: Enabling Efficient Mapping Space Exploration for a Reconfiguration Neural Accelerator

DOI-Link PDF-Link

Pre-trained bert-gru model for relation extraction

DOI-Link

Q8BERT: Quantized 8Bit BERT

DOI-Link PDF-Link

Structured pruning of a BERT-based question answering model

DOI-Link PDF-Link

Structured pruning of large language models

DOI-Link PDF-Link

Tinybert: Distilling bert for natural language understanding

DOI-Link PDF-Link


2020

A Low-Cost Reconfigurable Nonlinear Core for Embedded DNN Applications

DOI-Link

A Multi-Neural Network Acceleration Architecture

DOI-Link

A Primer in BERTology: What We Know About How BERT Works

DOI-Link

A Reconfigurable DNN Training Accelerator on FPGA

DOI-Link

A^3: Accelerating Attention Mechanisms in Neural Networks with Approximation

DOI-Link

Emerging Neural Workloads and Their Impact on Hardware

DOI-Link

Accelerating event detection with DGCNN and FPGAS

DOI-Link

An Empirical Analysis of BERT Embedding for Automated Essay Scoring

DOI-Link

**An investigation on different underlying quantization schemes for pre-trained language

编辑推荐精选

潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

下拉加载更多