transfomers-silicon-research

transfomers-silicon-research

Transformer模型硬件实现研究进展

本项目汇集了Transformer模型硬件实现的研究资料,包括BERT及其优化方案。内容涵盖算法-硬件协同设计、神经网络加速器、量化和剪枝等技术。项目提供了详细的论文列表,涉及FPGA实现、功耗优化等多个领域,全面展示了Transformer硬件加速的最新研究进展。

TransformerBERT自然语言处理硬件加速神经网络Github开源项目

Transformer Models Silicon Research

Research and Materials on Hardware implementation of Transformer Models

<!-- <p align="center"> <img src="https://img.shields.io/badge/-WIP-ff69b4?style=flat-square"/> </p> <p align="center"> <img src="https://img.shields.io/badge/Progress-%2599-ef6c00?labelColor=1565c0&style=flat-square"/> </p> -->

How to Contribute

You can add new papers via pull requests, Please check data/papers.yaml and if your paper is not in list, add entity at the last item and create pull request.

Transformer and BERT Model

  • BERT is a method of pre-training language representations, meaning that we train a general-purpose language understanding model on a large text corpus (like Wikipedia) and then use that model for downstream NLP tasks.

  • BERT was created and published in 2018 by Jacob Devlin and his colleagues from Google. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks.

<p align="center"> <img src="./data/img/BERT-ARCH.png" width='480' /> </p>
  • BERT is a Transformer-based model.
    • The architecture of BERT is similar to the original Transformer model, except that BERT has two separate Transformer models: one for the left-to-right direction (the “encoder”) and one for the right-to-left direction (the “encoder”).
    • The output of each model is the hidden state output by the final Transformer layer. The two models are pre-trained jointly on a large corpus of unlabeled text. The pre-training task is a simple and straightforward masked language modeling objective.
    • The pre-trained BERT model can then be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications.

Reference Papers

1. Attention Is All You Need

DOI-Link PDF-Download

Code-Link Code-Link

<details> <summary><img src="https://img.shields.io/badge/ABSTRACT-9575cd?&style=plastic"/></summary> The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 Englishto-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data. </details>

2. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

DOI-Link PDF-Download Code-Link Code-Link

<details> <summary><img src="https://img.shields.io/badge/ABSTRACT-9575cd?&style=plastic"/></summary> We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pretrain deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be finetuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial taskspecific architecture modifications. <br> BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement). </details>

Hardware Research

2018

Algorithm-Hardware Co-Design of Single Shot Detector for Fast Object Detection on FPGAs

DOI-Link

SparseNN: An energy-efficient neural network accelerator exploiting input and output sparsity

DOI-Link PDF-Link


2019

A Power Efficient Neural Network Implementation on Heterogeneous FPGA and GPU Devices

DOI-Link

A Simple and Effective Approach to Automatic Post-Editing with Transfer Learning

DOI-Link

An Evaluation of Transfer Learning for Classifying Sales Engagement Emails at Large Scale

DOI-Link

MAGNet: A Modular Accelerator Generator for Neural Networks

DOI-Link PDF-Link

mRNA: Enabling Efficient Mapping Space Exploration for a Reconfiguration Neural Accelerator

DOI-Link PDF-Link

Pre-trained bert-gru model for relation extraction

DOI-Link

Q8BERT: Quantized 8Bit BERT

DOI-Link PDF-Link

Structured pruning of a BERT-based question answering model

DOI-Link PDF-Link

Structured pruning of large language models

DOI-Link PDF-Link

Tinybert: Distilling bert for natural language understanding

DOI-Link PDF-Link


2020

A Low-Cost Reconfigurable Nonlinear Core for Embedded DNN Applications

DOI-Link

A Multi-Neural Network Acceleration Architecture

DOI-Link

A Primer in BERTology: What We Know About How BERT Works

DOI-Link

A Reconfigurable DNN Training Accelerator on FPGA

DOI-Link

A^3: Accelerating Attention Mechanisms in Neural Networks with Approximation

DOI-Link

Emerging Neural Workloads and Their Impact on Hardware

DOI-Link

Accelerating event detection with DGCNN and FPGAS

DOI-Link

An Empirical Analysis of BERT Embedding for Automated Essay Scoring

DOI-Link

**An investigation on different underlying quantization schemes for pre-trained language

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多