Bazel GitOps Rules provides tooling to bridge the gap between Bazel (for hermetic, reproducible, container builds) and continuous, git-operation driven, deployments. Users author standard kubernetes manifests and kustomize overlays for their services. Bazel GitOps Rules handles image push and substitution, applies necessary kustomizations, and handles content addressed substitutions of all object references (configmaps, secrets, etc). Bazel targets are exposed for applying the rendered manifest directly to a Kubernetes cluster, or into version control facilitating deployment via Git operations.
Bazel GitOps Rules is an alternative to rules_k8s. The main differences are:
<a name="installation"></a>
From the release you wish to use:
https://github.com/adobe/rules_gitops/releases
copy the WORKSPACE snippet into your WORKSPACE
file.
<a name="k8s_deploy"></a>
The k8s_deploy
creates rules that produce the .apply
and .gitops
targets k8s_deploy
is defined in k8s.bzl. k8s_deploy
takes the files listed in the manifests
, patches
, and configmaps_srcs
attributes and combines (renders) them into one YAML file. This happens when you bazel build
or bazel run
a target created by the k8s_deploy
. The file is created at bazel-bin/path/to/package/name.yaml
. When you run a .apply
target, it runs kubectl apply
on this file. When you run a .gitops
target, it copies this file to
the appropriate location in the same os separate repository.
For example, let's look at the example's k8s_deploy. We can peek at the file containing the rendered K8s manifests:
cd examples bazel run //helloworld:mynamespace.show
When you run bazel run ///helloworld:mynamespace.apply
, it applies this file into your personal ({BUILD_USER}
) namespace. Viewing the rendered files with .show
can be useful for debugging issues with invalid or misconfigured manifests.
Parameter | Default | Description |
---|---|---|
cluster | None | The name of the cluster in which these manifests will be applied. |
namespace | None | The target namespace to assign to all manifests. Any namespace value in the source manifests will be replaced or added if not specified. |
user | {BUILD_USER} | The user passed to kubectl in .apply rule. Must exist in users ~/.kube/config |
configmaps_srcs | None | A list of files (of any type) that will be combined into configmaps. See Generating Configmaps. |
configmaps_renaming | None | Configmaps/Secrets renaming policy. Could be None or 'hash'. 'hash' renaming policy is used to add a unique suffix to the generated configmap or secret name. All references to the configmap or secret in other manifests will be replaced with the generated name. |
secrets_srcs | None | A list of files (of any type) that will be combined into a secret similar to configmaps. |
manifests | glob(['*.yaml','*.yaml.tpl']) | A list of base manifests. See Base Manifests and Overlays. |
name_prefix | None | Adds prefix to the names of all resources defined in manifests. |
name_suffix | None | Adds suffix to the names of all resources defined in manifests. |
patches | None | A list of patch files to overlay the base manifests. See Base Manifests and Overlays. |
image_name_patches | None | A dict of image names that will be replaced with new ones. See kustomization images. |
image_tag_patches | None | A dict of image names which tags be replaced with new ones. See kustomization images. |
substitutions | None | Does parameter substitution in all the manifests (including configmaps). This should generally be limited to "CLUSTER" and "NAMESPACE" only. Any other replacements should be done with overlays. |
configurations | [] | A list of files with kustomize configurations. |
prefix_suffix_app_labels | False | Add the bundled configuration file allowing adding suffix and prefix to labels app and app.kubernetes.io/name and respective selector in Deployment. |
common_labels | {} | A map of labels that should be added to all objects and object templates. |
common_annotations | {} | A map of annotations that should be added to all objects and object templates. |
start_tag | "{{" | The character start sequence used for substitutions. |
end_tag | "}}" | The character end sequence used for substitutions. |
deps | [] | A list of dependencies used to drive k8s_deploy functionality (i.e. deps_aliases ). |
deps_aliases | {} | A dict of labels of file dependencies. File dependency contents are available for template expansion in manifests as {{imports.<label>}} . Each dependency in this dictionary should be present in the deps attribute. |
objects | [] | A list of other instances of k8s_deploy that this one depends on. See Adding Dependencies. |
images | {} | A dict of labels of Docker images. See Injecting Docker Images. |
image_digest_tag | False | A flag for whether or not to tag the image with the container digest. |
image_registry | docker.io | The registry to push images to. |
image_repository | None | The repository to push images to. By default, this is generated from the current package path. |
image_repository_prefix | None | Add a prefix to the image_repository. Can be used to upload the images in |
image_pushes | [] | A list of labels implementing K8sPushInfo referring image uploaded into registry. See Injecting Docker Images. |
release_branch_prefix | master | A git branch name/prefix. Automatically run GitOps while building this branch. See GitOps and Deployment. |
deployment_branch | None | Automatic GitOps output will appear in a branch and PR with this name. See GitOps and Deployment. |
gitops_path | cloud | Path within the git repo where gitops files get generated into |
tags | [] | See Bazel docs on tags. |
visibility | Default_visibility | Changes the visibility of all rules generated by this macro. See Bazel docs on visibility. |
<a name="base-manifests-and-overlays"></a>
The manifests listed in the manifests attribute are the base manifests used by the deployment. This is where the important manifests like Deployments, Services, etc. are listed.
The base manifests will be modified by most of the other k8s_deploy
attributes like substitutions
and images
. Additionally, they can be modified to configure them different clusters/namespaces/etc. using overlays.
To demonstrate, let's go over hypothetical multi cluster deployment.
Here is the fragment of the k8s_deploy
rule that is responsible for generating manifest variants per CLOUD, CLUSTER, and NAMESPACE :
k8s_deploy( ... manifests = glob([ # (1) "manifests/*.yaml", "manifests/%s/*.yaml" % (CLOUD), ]), patches = glob([ # (2) "overlays/*.yaml", "overlays/%s/*.yaml" % (CLOUD), "overlays/%s/%s/*.yaml" % (CLOUD, NAMESPACE), "overlays/%s/%s/%s/*.yaml" % (CLOUD, NAMESPACE, CLUSTER), ]), ... )
The manifests list (1)
combines common base manifests and CLOUD
specific manifests.
manifests
├── aws
│ └── pvc.yaml
├── onprem
│ ├── pv.yaml
│ └── pvc.yaml
├── deployment.yaml
├── ingress.yaml
└── service.yaml
Here we see that aws
and onprem
clouds have different persistence configurations aws/pvc.yaml
and onprem/pvc.yaml
.
The patches list (2)
requires more granular configuration that introduces 3 levels of customization: CLOUD, NAMESPACE, and CLUSTER. Each manifest fragment in the overlays subtree applied as strategic merge patch update operation.
overlays
├── aws
│ ├── deployment.yaml
│ ├── prod
│ │ ├── deployment.yaml
│ │ └── us-east-1
│ │ └── deployment.yaml
│ └── uat
│ └── deployment.yaml
└── onprem
├── prod
│ ├── deployment.yaml
│ └── us-east
│ └── deployment.yaml
└── uat
└── deployment.yaml
That looks like a lot. But lets try to decode what is happening here:
aws/deployment.yaml
adds persistent volume reference specific to all AWS deployments.aws/prod/deployment.yaml
modifies main container CPU and memory requirements in production configurations.aws/prod/us-east-1/deployment.yaml
adds monitoring sidecar.<a name="generating-configmaps"></a>
Configmaps are a special case of manifests. They can be rendered from a collection of files of any kind (.yaml, .properties, .xml, .sh, whatever). Let's use hypothetical Grafana deployment as an example:
[ k8s_deploy( name = NAME, cluster = CLUSTER, configmaps_srcs = glob([ # (1) "configmaps/%s/**/*" % CLUSTER ]), configmaps_renaming = 'hash', # (2) ... ) for NAME, CLUSTER, NAMESPACE in [ ("mynamespace", "dev", "{BUILD_USER}"), # (3) ("prod-grafana", "prod", "prod"), # (4) ] ]
Here we generate two k8s_deploy
targets, one for mynamespace
(3)
, another for production deployment (4)
.
The directory structure of configmaps
looks like this:
grafana
└── configmaps
├── dev
│ └── grafana
│ └── ldap.toml
└── prod
└── grafana
└── ldap.toml
The configmaps_srcs
parameter (1)
will get resolved into the patterns configmaps/dev/**/*
and configmaps/prod/**/*
. The result of rendering the manifests bazel run //grafana:prod-grafana.show
will have following manifest fragment:
apiVersion: v1 data: ldap.toml: | [[servers]] ... kind: ConfigMap metadata: name: grafana-k75h878g4f namespace: ops-prod
The name of directory on the first level of glob patten grafana
become the configmap name. The ldap.toml
file on the next level were embedded into the configmap.
In this example, the configmap renaming policy (2)
is set to hash
, so the configmap's name appears as grafana-k75h878g4f
. (If the renaming policy was None
, the configmap's name would remain as grafana
.) All the references to the grafana
configmap in other manifests are replaced with the generated name:
apiVersion: apps/v1 kind: Deployment spec: template: spec: containers: volumes: ... - configMap: items: - key: ldap.toml path: ldap.toml name: grafana-k75h878g4f name: grafana-ldap
<a name="injecting-docker-images"></a>
Third-party Docker images can be referenced directly in K8s manifests, but for most apps, we need to run our own images. The images are built in the Bazel build pipeline using rules_docker. For example, the java_image
rule creates an image of a Java application from Java source code, dependencies, and configuration.
Here's a (very contrived) example of how this ties in with k8s_deploy
. Here's the BUILD
file located in the package //examples
:
java_image( name = "helloworld_image", srcs = glob(["*.java"]), ... ) k8s_deploy( name = "helloworld", manifests = ["helloworld.yaml"], images = { "helloworld_image": ":helloworld_image", # (1) } )
And here's helloworld.yaml
:
apiVersion: v1 kind: Pod metadata: name: helloworld spec: containers: - image: //examples:helloworld_image # (2)
There images
attribute dictionary (1)
defines the images available for the substitution. The manifest file references the fully qualified image target path //examples:helloworld_image
(2)
.
The image
key value in the dictionary is used as an image push identifier. The best practice (as provided in the example) is to use image key that matches the label name of the image target.
When we bazel build
the example, the rendered manifest will look something like this:
apiVersion: v1 kind: Pod metadata: name: helloworld spec: containers: - image: registry.example.com/examples/helloworld_image@sha256:c94d75d68f4c1b436f545729bbce82774fda07
The image substitution using an images
key is supported, but not recommended (this functionality might be removed in the future). For example, helloworld.yaml
can reference helloworld_image
:
apiVersion: v1 kind: Pod metadata: name: helloworld spec: containers: - image: helloworld_image
Image substitutions for Custom Resource Definitions (CRD) resources could also use target references directly. Their digests are available through string substitution. For example,
apiVersion: v1 kind: MyCrd metadata: name: my_crd labels: app_label_image_digest: "{{//examples:helloworld_image.digest}}" app_label_image_short_digest: "{{//examples:helloworld_image.short-digest}}" spec: image: "{{//examples:helloworld_image}}"
would become
apiVersion: v1 kind: MyCrd metadata: name: my_crd labels: app_label_image_digest: "e6d465223da74519ba3e2b38179d1268b71a72f" app_label_image_short_digest: "e6d465223d" spec: image: registry.example.com/examples/helloworld_image@sha256:e6d465223da74519ba3e2b38179d1268b71a72f
An all examples above the image:
URL points to the helloworld_image
in the private Docker registry. The image is uploaded to the registry before any .apply
or .gitops
target is executed. See
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学 术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是 学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。