adapters

adapters

参数高效与模块化迁移学习的统一库

提供一个兼容HuggingFace Transformers的附加库,整合超过10种Adapter方法和超过20种先进Transformer模型,简化训练和推理的编程工作量。支持高精度与量化训练、任务算术合并适配器以及多适配器组合等功能,适用于NLP任务的参数高效传输学习。

AdaptersHuggingFaceTransfer LearningPyTorchTransformerGithub开源项目

Adapters 项目介绍

项目概述

Adapters 是一款附加在 HuggingFace Transformers 库之上的开源库,旨在提供一种统一接口,便于在多种现代 Transformer 模型之间实现参数高效和模块化的迁移学习。Adapters 包含了超过10种 adapter 方法,并支持超过20种主流的 Transformer 模型,减少训练和推理过程中的编程负担。

功能简介

Adapters 专注于参数高效的微调和模块化迁移学习,支持多种高级特性。例如,全精度或量化训练(如 Q-LoRA、Q-Bottleneck Adapters 或 Q-PrefixTuning),通过任务运算合并 adapters,或通过构成模块(composition blocks)来组合多个 adapters。这些特性使得在自然语言处理任务中的参数高效迁移学习研究变得更加成熟。

安装指南

Adapters 支持 Python 3.8 及以上版本,以及 PyTorch 1.10 及以上版本。安装步骤如下:

  1. 确保已经安装 PyTorch,具体安装指南可参考 PyTorch 官网。
  2. 可以通过 PyPI 安装 Adapters:
    pip install -U adapters
  3. 也可以从源代码安装:
    git clone https://github.com/adapter-hub/adapters.git cd adapters pip install .

快速使用指南

加载预训练的 adapters

以下代码示例展示了如何加载预训练的 adapters:

from adapters import AutoAdapterModel from transformers import AutoTokenizer model = AutoAdapterModel.from_pretrained("roberta-base") tokenizer = AutoTokenizer.from_pretrained("roberta-base") model.load_adapter("AdapterHub/roberta-base-pf-imdb", source="hf", set_active=True) print(model(**tokenizer("This works great!", return_tensors="pt")).logits)

适配现有模型设置

Adapt 现有模型,将新建的 adapter 整合进模型并进行训练:

import adapters from transformers import AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained("t5-base") adapters.init(model) model.add_adapter("my_lora_adapter", config="lora") model.train_adapter("my_lora_adapter") # 通常的训练循环...

灵活配置 adapters

配置不同的 adapter 以满足特定需求:

from adapters import ConfigUnion, PrefixTuningConfig, ParBnConfig, AutoAdapterModel model = AutoAdapterModel.from_pretrained("microsoft/deberta-v3-base") adapter_config = ConfigUnion( PrefixTuningConfig(prefix_length=20), ParBnConfig(reduction_factor=4), ) model.add_adapter("my_adapter", config=adapter_config, set_active=True)

在单个模型中轻松组合 adapters

可以在模型中并行加载并组合多个 adapters:

from adapters import AdapterSetup, AutoAdapterModel import adapters.composition as ac model = AutoAdapterModel.from_pretrained("roberta-base") qc = model.load_adapter("AdapterHub/roberta-base-pf-trec") sent = model.load_adapter("AdapterHub/roberta-base-pf-imdb") with AdapterSetup(ac.Parallel(qc, sent)): print(model(**tokenizer("What is AdapterHub?", return_tensors="pt")))

支持的模型与方法

Adapters 库当前支持的模型及方法丰富,包括 Bottleneck adapters、AdapterFusion、默认 Drop、Prefix Tuning、QLoRA、ReFT 等方法。通过与 PyTorch 的结合,提供了一流的迁移学习工具。

结语

Adapters 通过提供参数高效和模块化的迁移学习方法,极大地方便了自然语言处理工作的科研和实际应用。无论是现有机器学习模型的改进,还是全新的研究方向的探索,它都提供了强大而灵活的解决方案。

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多