参数高效与模块化迁移学习的统一库
提供一个兼容HuggingFace Transformers的附加库, 整合超过10种Adapter方法和超过20种先进Transformer模型,简化训练和推理的编程工作量。支持高精度与量化训练、任务算术合并适配器以及多适配器组合等功能,适用于NLP任务的参数高效传输学习。
Adapters 是一款附加在 HuggingFace Transformers 库之上的开源库,旨在提供一种统一接口,便于在多种现代 Transformer 模型之间实现参数高效和模块化的迁移学习。Adapters 包含了超过10种 adapter 方法,并支持超过20种主流的 Transformer 模型,减少训练和推理过程中的编程负担。
Adapters 专注于参数高效的微调和模块化迁移学习,支持多种高级特性。例如,全精度或量化训练(如 Q-LoRA、Q-Bottleneck Adapters 或 Q-PrefixTuning),通过任务运算合并 adapters,或通过构成模块(composition blocks)来组合多个 adapters。这些特性使得在自然语言处理任务中的参数高效迁移学习研究变得更加成熟。
Adapters 支持 Python 3.8 及以上版本,以及 PyTorch 1.10 及以上版本。安装步骤如下:
pip install -U adapters
git clone https://github.com/adapter-hub/adapters.git cd adapters pip install .
以下代码示例展示了如何加载预训练的 adapters:
from adapters import AutoAdapterModel from transformers import AutoTokenizer model = AutoAdapterModel.from_pretrained("roberta-base") tokenizer = AutoTokenizer.from_pretrained("roberta-base") model.load_adapter("AdapterHub/roberta-base-pf-imdb", source="hf", set_active=True) print(model(**tokenizer("This works great!", return_tensors="pt")).logits)
Adapt 现有模型,将新建的 adapter 整合进模型并进行训练:
import adapters from transformers import AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained("t5-base") adapters.init(model) model.add_adapter("my_lora_adapter", config="lora") model.train_adapter("my_lora_adapter") # 通常的训练循环...
配置不同的 adapter 以满足特定需求:
from adapters import ConfigUnion, PrefixTuningConfig, ParBnConfig, AutoAdapterModel model = AutoAdapterModel.from_pretrained("microsoft/deberta-v3-base") adapter_config = ConfigUnion( PrefixTuningConfig(prefix_length=20), ParBnConfig(reduction_factor=4), ) model.add_adapter("my_adapter", config=adapter_config, set_active=True)
可以在模型中并行加载并组合多个 adapters:
from adapters import AdapterSetup, AutoAdapterModel import adapters.composition as ac model = AutoAdapterModel.from_pretrained("roberta-base") qc = model.load_adapter("AdapterHub/roberta-base-pf-trec") sent = model.load_adapter("AdapterHub/roberta-base-pf-imdb") with AdapterSetup(ac.Parallel(qc, sent)): print(model(**tokenizer("What is AdapterHub?", return_tensors="pt")))
Adapters 库当前支持的模型及方法丰富,包括 Bottleneck adapters、AdapterFusion、默认 Drop、Prefix Tuning、QLoRA、ReFT 等方法。通过与 PyTorch 的结合,提供了一流的迁移学习工具。
Adapters 通过提供参数高效和模块化的迁移学习方法,极大地方便了自然语言处理工作的科研和实际应用。无论是现有机器学习模型的改进,还是全新的研究方向的探索,它都提供了强大而灵活的解决方案。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。