Due to the inherent flexibility of prompting, foundation models have emerged as the predominant force in the fields of natural language processing and computer vision. The introduction of the Segment Anything Model (SAM) (paper) and SAM2 (paper) signifies a noteworthy expansion of the prompt-driven paradigm into the domain of image/video segmentation, introducing a plethora of previously unexplored capabilities.
We provide a comprehensive survey of recent endeavors aimed at extending the efficacy of SAM to medical image segmentation tasks, encompassing both empirical benchmarking and methodological adaptations. Additionally, we explore potential avenues for future research directions in SAM's role within medical image segmentation. Please refer to the paper for more details.
This repo will continue to track and summarize the latest research progress of SAM in medical image segmentation to support ongoing research endeavors. If you find this project helpful, please consider stars or citing. Feel free to contact for any suggestions. If you would like to contribute, please open an issue.
@article{SAM4MIS,
title={Segment Anything Model for Medical Image Segmentation: Current Applications and Future Directions},
author={Zhang, Yichi and Shen, Zhenrong and Jiao, Rushi},
journal={Computers in Biology and Medicine},
volume={171},
pages={108238},
year={2024}
}
Segment Anything Model (SAM) uses vision transformer-based image encoder to extract image features and compute an image embedding, and prompt encoder to embed prompts and incorporate user interactions. Then extranted information from two encoders are combined to alightweight mask decoder to generate segmentation results based on the image embedding, prompt embedding, and output token. For more details, please refer to the original paper of SAM.
A brief chronology of Segment Anything Model (SAM) and its variants for medical image segmentation in 2023.
Date | Authors | Title | Code |
---|---|---|---|
202408 | Y. Yamagishi et al. | Zero-shot 3D Segmentation of Abdominal Organs in CT Scans Using Segment Anything Model 2: Adapting Video Tracking Capabilities for 3D Medical Imaging (paper) | None |
202408 | M. Mansoori et al. | Polyp SAM 2: Advancing Zero shot Polyp Segmentation in Colorectal Cancer Detection (paper) | Code |
202408 | AS. Yu et al. | Novel adaptation of video segmentation to 3D MRI: efficient zero-shot knee segmentation with SAM2 (paper) | None |
202408 | J. Yu et al. | SAM 2 in Robotic Surgery: An Empirical Evaluation for Robustness and Generalization in Surgical Video Segmentation (paper) | None |
202408 | T. Chen et al. | SAM2-Adapter: Evaluating & Adapting Segment Anything 2 in Downstream Tasks: Camouflage, Shadow, Medical Image Segmentation, and More (paper) | None |
202408 | S. Sengupta et al. | Is SAM 2 Better than SAM in Medical Image Segmentation? (paper) | None |
202408 | Y. Shen et al. | Performance and Non-adversarial Robustness of the Segment Anything Model 2 in Surgical Video Segmentation (paper) | None |
202408 | M. Zhang et al. | SAM2-PATH: A better segment anything model for semantic segmentation in digital pathology (paper) | Code |
202408 | J. Ma et al. | Segment Anything in Medical Images and Videos: Benchmark and Deployment (paper) | Code |
202408 | Z. Yan et al. | Biomedical SAM 2: Segment Anything in Biomedical Images and Videos (paper) | None |
202408 | C. Shen et al. | Interactive 3D Medical Image Segmentation with SAM 2 (paper) | Code |
202408 | A. Lou et al. | Zero-Shot Surgical Tool Segmentation in Monocular Video Using Segment Anything Model 2 (paper) | None |
202408 | J. Zhu et al. | Medical SAM 2: Segment medical images as video via Segment Anything Model 2 (paper) | Code |
202408 | H. Dong et al. | Segment anything model 2: an application to 2D and 3D medical images (paper) | None |
Date | Authors | Title | Code |
---|---|---|---|
202408 | J. Wei et al. | SAM-FNet: SAM-Guided Fusion Network for Laryngo-Pharyngeal Tumor Detection (paper) | Code |
202408 | X. Wei et al. | PromptSAM+: Malware Detection based on Prompt Segment Anything Model (paper) | Code |
202407 | J. Cai et al. | PESAM: Privacy-Enhanced Segment Anything Model for Medical Image Segmentation (paper) | None |
202407 | M. Asokan et al. | A Federated Learning-Friendly Approach for Parameter-Efficient Fine-Tuning of SAM in 3D Segmentation (paper) | Code |
202407 | SN. Gowda et al. | CC-SAM: SAM with Cross-feature Attention and Context for Ultrasound Image Segmentation(paper) | None |
202407 | X. Huo et al. | Dr-SAM: U-Shape Structure Segment Anything Model for Generalizable Medical Image Segmentation (paper) | None |
202407 | H. Fang et al. | SAM-MIL: A Spatial Contextual Aware Multiple Instance Learning Approach for Whole Slide Image Classification (paper) | None |
202407 | Q. Xu et al. | ESP-MedSAM: Efficient Self-Prompting SAM for Universal Domain-Generalized Medical Image Segmentation (paper) | Code |
202407 | X. Zhao et al. | SAM-Driven Weakly Supervised Nodule Segmentation with Uncertainty-Aware Cross Teaching (paper) | None |
202407 | Q. Xu et al. | ProtoSAM: One Shot Medical Image Segmentation With Foundational Models (paper) | Code |
202407 | A. Murali et al. | CycleSAM: One-Shot Surgical Scene Segmentation using Cycle-Consistent Feature Matching to Prompt SAM (paper) | None |
202407 | T. Song et al. | TinySAM-Med3D: A Lightweight Segment Anything Model for Volumetric Medical Imaging with Mixture of Experts (paper) | None |
202407 | Y. Gao et al. | MBA-Net: SAM-driven Bidirectional Aggregation Network for Ovarian Tumor Segmentation (paper) | None |
202407 | J. Miao et al. | Cross Prompting Consistency with Segment Anything Model for Semi-supervised Medical Image Segmentation (paper) | Code |
202407 | G. Wang et al. | SAM-Med3D-MoE: Towards a Non-Forgetting Segment Anything Model via Mixture of Experts for 3D Medical Image Segmentation (paper) | None |
202407 | Z. Zhang et al. | Quantification of cardiac capillarization in basement-membrane-immunostained myocardial slices using Segment Anything Model (paper) | None |
202407 | H. Li et al. | ASPS: Augmented Segment Anything Model for Polyp Segmentation (paper) | Code |
202406 | Y. Xie et al. | SimTxtSeg: Weakly-Supervised Medical Image Segmentation with Simple Text Cues (paper) | None |
202406 | X. Deng et al. | MemSAM: Taming Segment Anything Model for Echocardiography Video Segmentation (paper) | Code |
202406 | Yunhe Gao | Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation (paper) | Code |
202406 | C.D Albelda et al. | How SAM Perceives Different mp-MRI Brain Tumor Domains? (paper) | Code |
202406 | T. Huang et al. | Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation (paper) | Code |
202406 | B. Towle et al. | SimSAM: Zero-shot Medical Image Segmentation via Simulated Interaction (paper) | Code |
202405 | Y. Gu et al. | LeSAM: Adapt Segment Anything Model for medical lesion segmentation (paper) | None |
202405 | J. Leng et al. | Development of UroSAM: A Machine Learning Model to Automatically Identify Kidney Stone Composition from Endoscopic Video (paper) | None |
202405 | MM. Rahman et al. | PP-SAM: Perturbed Prompts for Robust Adaptation of Segment Anything Model for Polyp Segmentation (paper) | Code |
202405 | X. Zhang et al. | A Foundation Model for Brain Lesion Segmentation with Mixture of Modality Experts (paper) | Code |
202405 | TJ. Chan et al. | SAM3D: Zero-Shot Semi-Automatic Segmentation in 3D Medical Images with the Segment Anything Model (paper) | None |
202405 | HL. Zedda et al. | SAMMI: Segment Anything Model for Malaria Identification (paper) | None |
202404 | H. Zhou et al. | AGSAM: Agent-Guided Segment Anything Model for Automatic Segmentation in Few-Shot Scenarios (paper) | None |
202404 | V. Zohranyan et al. | Dr-SAM: An End-to-End Framework for Vascular Segmentation, Diameter Estimation, and Anomaly Detection on Angiography Images (paper) | Code |
202404 | Z. Tu et al. | Ultrasound SAM Adapter: Adapting SAM for Breast Lesion Segmentation in Ultrasound Images (paper) | Code |
202404 | Y. Sheng et al. | Surgical-DeSAM: Decoupling SAM for Instrument Segmentation in Robotic Surgery (paper) | None |
202404 | J. Yu et al. | Adapting SAM for Surgical Instrument Tracking and Segmentation in Endoscopic Submucosal Dissection Videos (paper) | None |
202404 | H. Gu et al. | How to build the best medical image segmentation algorithm using foundation models: a comprehensive empirical study with Segment Anything Model (paper) | Code |
202404 | W. Abebe et al. | SAM-I-Am: Semantic Boosting for Zero-shot Atomic-Scale Electron Micrograph Segmentation (paper) | None |
202404 | S. Aleem et al. | Test-Time Adaptation with SaLIP: A Cascade of SAM and CLIP for Zero-shot Medical Image Segmentation (paper) | Code |
202404 | Z. Su et al. | Adapting SAM to histopathology images for tumor bud segmentation in colorectal cancer (paper) | None |
202404 | Y. Ding et al. | Barely-supervised Brain Tumor Segmentation via Employing Segment Anything Model (paper) | None |
202404 | Y. Zhu et al. | SAM-Att: A Prompt-free SAM-related Model with an Attention Module for Automatic Segmentation of the Left Ventricle in Echocardiography (paper) | None |
202404 | Y. |
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号