Mamba-in-CV

Mamba-in-CV

Mamba模型在计算机视觉领域的最新应用概览

本项目整理了近期Mamba模型在计算机视觉领域的研究论文,涵盖分类、检测、分割、增强等多项CV任务。内容展示了Mamba在视觉应用中的潜力,并持续更新,为研究者提供了解该领域最新进展的便捷渠道。

Mamba计算机视觉深度学习图像处理神经网络Github开源项目

Mamba-in-Computer-Vision

Mamba-in-VisionAwesome

A paper list of some recent Mamba-based CV works. If you find some ignored papers, please open issues or pull requests.

**Last updated: 2024/08/12

Mamba

  • (arXiv 2023.12) Mamba: Linear-Time Sequence Modeling with Selective State Spaces, [Paper], [Code]

Survey

  • (arXiv 2024.04) Mamba-360: Survey of State Space Models as Transformer Alternative for Long Sequence Modelling: Methods, Applications, and Challenges, [Paper], [Project]
  • (arXiv 2024.04) A Survey on Visual Mamba, [Paper]
  • (arXiv 2024.04) State Space Model for New-Generation Network Alternative to Transformers: A Survey, [Paper], [Project]
  • (arXiv 2024.05) A Survey on Vision Mamba: Models, Applications and Challenges, [Paper], [Project]
  • (arXiv 2024.05) Vision Mamba: A Comprehensive Survey and Taxonomy, [Paper], [Project]

Recent Papers

Action

  • (arXiv 2024.03) HARMamba: Efficient Wearable Sensor Human Activity Recognition Based on Bidirectional Selective SSM, [Paper]
  • (arXiv 2024.04) Simba: Mamba augmented U-ShiftGCN for Skeletal Action Recognition in Videos, [Paper]

Adversarial Attack

  • (arXiv 2024.03) Understanding Robustness of Visual State Space Models for Image Classification, [Paper]

Anomaly Detection

  • (arXiv 2024.04) MambaAD: Exploring State Space Models for Multi-class Unsupervised Anomaly Detection, [Paper], [Code]
  • (arXiv 2024.07) ALMRR: Anomaly Localization Mamba on Industrial Textured Surface with Feature Reconstruction and Refinement, [Paper], [Code]

Assessment

  • (arXiv 2024.06) Q-Mamba: On First Exploration of Vision Mamba for Image Quality Assessment, [Paper], [Code]

Autonomous Driving

  • (arXiv 2024.05) DriveWorld: 4D Pre-trained Scene Understanding via World Models for Autonomous Driving, [Paper]

Classification (Backbone)

  • (arXiv 2024.01) Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model, [Paper], [Code]
  • (arXiv 2024.01) VMamba: Visual State Space Model, [Paper], [Code]
  • (arXiv 2024.02) Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining, [Paper], [Code]
  • (arXiv 2024.02) Res-VMamba: Fine-Grained Food Category Visual Classification Using Selective State Space Models with Deep Residual Learning, [Paper],[Code]
  • (arXiv 2024.02) Mamba-ND: Selective State Space Modeling for Multi-Dimensional Data, [Paper]
  • (arXiv 2024.03) LocalMamba: Visual State Space Model with Windowed Selective Scan, [Paper], [Code]
  • (arXiv 2024.03) EfficientVMamba: Atrous Selective Scan for Light Weight Visual Mamba, [Paper], [Code]
  • (arXiv 2024.03) On the low-shot transferability of [V]-Mamba, [Paper]
  • (arXiv 2024.03) SiMBA: Simplified Mamba-Based Architecture for Vision and Multivariate Time series, [Paper], [Code]
  • (arXiv 2024.03) PlainMamba: Improving Non-Hierarchical Mamba in Visual Recognition, [Paper],[Code]
  • (arXiv 2024.03) MambaMixer: Efficient Selective State Space Models with Dual Token and Channel Selection, [Paper],[Code]
  • (arXiv 2024.05) Multi-Scale VMamba: Hierarchy in Hierarchy Visual State Space Model, [Paper],[Code]
  • (arXiv 2024.05) Scalable Visual State Space Model with Fractal Scanning, [Paper]
  • (arXiv 2024.05) Mamba-R: Vision Mamba ALSO Needs Registers, [Paper]
  • (arXiv 2024.05) Demystify Mamba in Vision: A Linear Attention Perspective, [Paper],[Code]
  • (arXiv 2024.05) Vim-F: Visual State Space Model Benefiting from Learning in the Frequency Domain, [Paper],[Code]
  • (arXiv 2024.06) Autoregressive Pretraining with Mamba in Vision, [Paper],[Code]
  • (arXiv 2024.06) Towards Evaluating the Robustness of Visual State Space Models, [Paper],[Code]
  • (arXiv 2024.06) MambaVision: A Hybrid Mamba-Transformer Vision Backbone, [Paper],[Code]
  • (arXiv 2024.07) GroupMamba: Parameter-Efficient and Accurate Group Visual State Space Model, [Paper],[Code]

Compression

  • (arXiv 2024.05) MambaVC: Learned Visual Compression with Selective State Spaces, [Paper]

Crowd Counting

  • (arXiv 2024.05) VMambaCC: A Visual State Space Model for Crowd Counting, [Paper]

Deblurring

  • (arXiv 2024.03) Aggregating Local and Global Features via Selective State Spaces Model for Efficient Image Deblurring, [Paper],[Code]
  • (arXiv 2024.05) Efficient Visual State Space Model for Image Deblurring, [Paper]

Dehazing

  • (arXiv 2024.02) U-shaped Vision Mamba for Single Image Dehazing, [Paper],[Code]
  • (arXiv 2024.05) RSDehamba: Lightweight Vision Mamba for Remote Sensing Satellite Image Dehazing, [Paper]

Depth

  • (arXiv 2024.06) MambaDepth: Enhancing Long-range Dependency for Self-Supervised Fine-Structured Monocular Depth Estimation, [Paper],[Code]

Deraining

  • (arXiv 2024.04) FreqMamba: Viewing Mamba from a Frequency Perspective for Image Deraining, [Paper]
  • (arXiv 2024.05) Image Deraining with Frequency-Enhanced State Space Model, [Paper]
  • (arXiv 2024.08) RainMamba: Enhanced Locality Learning with State Space Models for Video Deraining, [Paper],[Code]

Detection

  • (arXiv 2024.03) MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection, [Paper],[Code]
  • (arXiv 2024.04) Fusion-Mamba for Cross-modality Object Detection, [Paper]
  • (arXiv 2024.04) CFMW: Cross-modality Fusion Mamba for Multispectral Object Detection under Adverse Weather Conditions, [Paper],[Code]
  • (arXiv 2024.05) SOAR: Advancements in Small Body Object Detection for Aerial Imagery Using State Space Models and Programmable Gradients, [Paper],[Code]
  • (arXiv 2024.06) Mamba YOLO: SSMs-Based YOLO For Object Detection, [Paper],[Code]
  • (arXiv 2024.08) MonoMM: A Multi-scale Mamba-Enhanced Network for Real-time Monocular 3D Object Detection, [Paper]
  • (arXiv 2024.08) MambaST: A Plug-and-Play Cross-Spectral Spatial-Temporal Fuser for Efficient Pedestrian Detection, [Paper],[Code]

Diffusion

  • (arXiv 2024.03) ZigMa: Zigzag Mamba Diffusion Model, [Paper],[Code]
  • (arXiv 2024.05) DiM: Diffusion Mamba for Efficient High-Resolution Image Synthesis, [Paper],[Code]
  • (arXiv 2024.05) Scaling Diffusion Mamba with Bidirectional SSMs for Efficient Image and Video Generation, [Paper]
  • (arXiv 2024.06) Dimba: Transformer-Mamba Diffusion Models, [Paper],[Code]
  • (arXiv 2024.08) LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba, [Paper]

Domain

  • (arXiv 2024.04) DGMamba: Domain Generalization via Generalized State Space Model, [Paper],[Code]

Enhancement

  • (arXiv 2024.04) MambaUIE&SR: Unraveling the Ocean's Secrets with Only 2.8 FLOPs, [Paper],[Code]
  • (arXiv 2024.05) Retinexmamba: Retinex-based Mamba for Low-light Image Enhancement, [Paper],[Code]
  • (arXiv 2024.05) WaterMamba: Visual State Space Model for Underwater Image Enhancement, [Paper]
  • (arXiv 2024.05) MambaLLIE: Implicit Retinex-Aware Low Light Enhancement with Global-then-Local State Space, [Paper]
  • (arXiv 2024.06) LLEMamba: Low-Light Enhancement via Relighting-Guided Mamba with Deep Unfolding Network, [Paper]
  • (arXiv 2024.06) PixMamba: Leveraging State Space Models in a Dual-Level Architecture for Underwater Image Enhancement, [Paper],[Code]
  • (arXiv 2024.07) RESVMUNetX: A Low-Light Enhancement Network Based on VMamba, [Paper]
  • (arXiv 2024.08) Wave-Mamba: Wavelet State Space Model for Ultra-High-Definition Low-Light Image Enhancement, [Paper],[Code]

Event Cameras

  • (arXiv 2024.02) State Space Models for Event Cameras, [Paper]
  • (arXiv 2024.04) MambaPupil: Bidirectional Selective Recurrent model for Event-based Eye tracking, [Paper]

Face

  • (arXiv 2024.05) FER-YOLO-Mamba: Facial Expression Detection and Classification Based on Selective State Space, [Paper],[Code]

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多