Mamba-in-CV

Mamba-in-CV

Mamba模型在计算机视觉领域的最新应用概览

本项目整理了近期Mamba模型在计算机视觉领域的研究论文,涵盖分类、检测、分割、增强等多项CV任务。内容展示了Mamba在视觉应用中的潜力,并持续更新,为研究者提供了解该领域最新进展的便捷渠道。

Mamba计算机视觉深度学习图像处理神经网络Github开源项目

Mamba-in-Computer-Vision

Mamba-in-VisionAwesome

A paper list of some recent Mamba-based CV works. If you find some ignored papers, please open issues or pull requests.

**Last updated: 2024/08/12

Mamba

  • (arXiv 2023.12) Mamba: Linear-Time Sequence Modeling with Selective State Spaces, [Paper], [Code]

Survey

  • (arXiv 2024.04) Mamba-360: Survey of State Space Models as Transformer Alternative for Long Sequence Modelling: Methods, Applications, and Challenges, [Paper], [Project]
  • (arXiv 2024.04) A Survey on Visual Mamba, [Paper]
  • (arXiv 2024.04) State Space Model for New-Generation Network Alternative to Transformers: A Survey, [Paper], [Project]
  • (arXiv 2024.05) A Survey on Vision Mamba: Models, Applications and Challenges, [Paper], [Project]
  • (arXiv 2024.05) Vision Mamba: A Comprehensive Survey and Taxonomy, [Paper], [Project]

Recent Papers

Action

  • (arXiv 2024.03) HARMamba: Efficient Wearable Sensor Human Activity Recognition Based on Bidirectional Selective SSM, [Paper]
  • (arXiv 2024.04) Simba: Mamba augmented U-ShiftGCN for Skeletal Action Recognition in Videos, [Paper]

Adversarial Attack

  • (arXiv 2024.03) Understanding Robustness of Visual State Space Models for Image Classification, [Paper]

Anomaly Detection

  • (arXiv 2024.04) MambaAD: Exploring State Space Models for Multi-class Unsupervised Anomaly Detection, [Paper], [Code]
  • (arXiv 2024.07) ALMRR: Anomaly Localization Mamba on Industrial Textured Surface with Feature Reconstruction and Refinement, [Paper], [Code]

Assessment

  • (arXiv 2024.06) Q-Mamba: On First Exploration of Vision Mamba for Image Quality Assessment, [Paper], [Code]

Autonomous Driving

  • (arXiv 2024.05) DriveWorld: 4D Pre-trained Scene Understanding via World Models for Autonomous Driving, [Paper]

Classification (Backbone)

  • (arXiv 2024.01) Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model, [Paper], [Code]
  • (arXiv 2024.01) VMamba: Visual State Space Model, [Paper], [Code]
  • (arXiv 2024.02) Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining, [Paper], [Code]
  • (arXiv 2024.02) Res-VMamba: Fine-Grained Food Category Visual Classification Using Selective State Space Models with Deep Residual Learning, [Paper],[Code]
  • (arXiv 2024.02) Mamba-ND: Selective State Space Modeling for Multi-Dimensional Data, [Paper]
  • (arXiv 2024.03) LocalMamba: Visual State Space Model with Windowed Selective Scan, [Paper], [Code]
  • (arXiv 2024.03) EfficientVMamba: Atrous Selective Scan for Light Weight Visual Mamba, [Paper], [Code]
  • (arXiv 2024.03) On the low-shot transferability of [V]-Mamba, [Paper]
  • (arXiv 2024.03) SiMBA: Simplified Mamba-Based Architecture for Vision and Multivariate Time series, [Paper], [Code]
  • (arXiv 2024.03) PlainMamba: Improving Non-Hierarchical Mamba in Visual Recognition, [Paper],[Code]
  • (arXiv 2024.03) MambaMixer: Efficient Selective State Space Models with Dual Token and Channel Selection, [Paper],[Code]
  • (arXiv 2024.05) Multi-Scale VMamba: Hierarchy in Hierarchy Visual State Space Model, [Paper],[Code]
  • (arXiv 2024.05) Scalable Visual State Space Model with Fractal Scanning, [Paper]
  • (arXiv 2024.05) Mamba-R: Vision Mamba ALSO Needs Registers, [Paper]
  • (arXiv 2024.05) Demystify Mamba in Vision: A Linear Attention Perspective, [Paper],[Code]
  • (arXiv 2024.05) Vim-F: Visual State Space Model Benefiting from Learning in the Frequency Domain, [Paper],[Code]
  • (arXiv 2024.06) Autoregressive Pretraining with Mamba in Vision, [Paper],[Code]
  • (arXiv 2024.06) Towards Evaluating the Robustness of Visual State Space Models, [Paper],[Code]
  • (arXiv 2024.06) MambaVision: A Hybrid Mamba-Transformer Vision Backbone, [Paper],[Code]
  • (arXiv 2024.07) GroupMamba: Parameter-Efficient and Accurate Group Visual State Space Model, [Paper],[Code]

Compression

  • (arXiv 2024.05) MambaVC: Learned Visual Compression with Selective State Spaces, [Paper]

Crowd Counting

  • (arXiv 2024.05) VMambaCC: A Visual State Space Model for Crowd Counting, [Paper]

Deblurring

  • (arXiv 2024.03) Aggregating Local and Global Features via Selective State Spaces Model for Efficient Image Deblurring, [Paper],[Code]
  • (arXiv 2024.05) Efficient Visual State Space Model for Image Deblurring, [Paper]

Dehazing

  • (arXiv 2024.02) U-shaped Vision Mamba for Single Image Dehazing, [Paper],[Code]
  • (arXiv 2024.05) RSDehamba: Lightweight Vision Mamba for Remote Sensing Satellite Image Dehazing, [Paper]

Depth

  • (arXiv 2024.06) MambaDepth: Enhancing Long-range Dependency for Self-Supervised Fine-Structured Monocular Depth Estimation, [Paper],[Code]

Deraining

  • (arXiv 2024.04) FreqMamba: Viewing Mamba from a Frequency Perspective for Image Deraining, [Paper]
  • (arXiv 2024.05) Image Deraining with Frequency-Enhanced State Space Model, [Paper]
  • (arXiv 2024.08) RainMamba: Enhanced Locality Learning with State Space Models for Video Deraining, [Paper],[Code]

Detection

  • (arXiv 2024.03) MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection, [Paper],[Code]
  • (arXiv 2024.04) Fusion-Mamba for Cross-modality Object Detection, [Paper]
  • (arXiv 2024.04) CFMW: Cross-modality Fusion Mamba for Multispectral Object Detection under Adverse Weather Conditions, [Paper],[Code]
  • (arXiv 2024.05) SOAR: Advancements in Small Body Object Detection for Aerial Imagery Using State Space Models and Programmable Gradients, [Paper],[Code]
  • (arXiv 2024.06) Mamba YOLO: SSMs-Based YOLO For Object Detection, [Paper],[Code]
  • (arXiv 2024.08) MonoMM: A Multi-scale Mamba-Enhanced Network for Real-time Monocular 3D Object Detection, [Paper]
  • (arXiv 2024.08) MambaST: A Plug-and-Play Cross-Spectral Spatial-Temporal Fuser for Efficient Pedestrian Detection, [Paper],[Code]

Diffusion

  • (arXiv 2024.03) ZigMa: Zigzag Mamba Diffusion Model, [Paper],[Code]
  • (arXiv 2024.05) DiM: Diffusion Mamba for Efficient High-Resolution Image Synthesis, [Paper],[Code]
  • (arXiv 2024.05) Scaling Diffusion Mamba with Bidirectional SSMs for Efficient Image and Video Generation, [Paper]
  • (arXiv 2024.06) Dimba: Transformer-Mamba Diffusion Models, [Paper],[Code]
  • (arXiv 2024.08) LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba, [Paper]

Domain

  • (arXiv 2024.04) DGMamba: Domain Generalization via Generalized State Space Model, [Paper],[Code]

Enhancement

  • (arXiv 2024.04) MambaUIE&SR: Unraveling the Ocean's Secrets with Only 2.8 FLOPs, [Paper],[Code]
  • (arXiv 2024.05) Retinexmamba: Retinex-based Mamba for Low-light Image Enhancement, [Paper],[Code]
  • (arXiv 2024.05) WaterMamba: Visual State Space Model for Underwater Image Enhancement, [Paper]
  • (arXiv 2024.05) MambaLLIE: Implicit Retinex-Aware Low Light Enhancement with Global-then-Local State Space, [Paper]
  • (arXiv 2024.06) LLEMamba: Low-Light Enhancement via Relighting-Guided Mamba with Deep Unfolding Network, [Paper]
  • (arXiv 2024.06) PixMamba: Leveraging State Space Models in a Dual-Level Architecture for Underwater Image Enhancement, [Paper],[Code]
  • (arXiv 2024.07) RESVMUNetX: A Low-Light Enhancement Network Based on VMamba, [Paper]
  • (arXiv 2024.08) Wave-Mamba: Wavelet State Space Model for Ultra-High-Definition Low-Light Image Enhancement, [Paper],[Code]

Event Cameras

  • (arXiv 2024.02) State Space Models for Event Cameras, [Paper]
  • (arXiv 2024.04) MambaPupil: Bidirectional Selective Recurrent model for Event-based Eye tracking, [Paper]

Face

  • (arXiv 2024.05) FER-YOLO-Mamba: Facial Expression Detection and Classification Based on Selective State Space, [Paper],[Code]

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多