RUL

RUL

Transformer和AttMoE网络在锂电池剩余寿命预测中的应用

本项目探索了Transformer和AttMoE网络在锂电池剩余寿命预测领域的应用。研究基于NASA和CALCE数据集进行实验,展示了详细的实验结果和模型架构。项目分析了dropout和noise_level参数对模型性能的影响,并提出了优化建议。代码采用PyTorch实现,并提供了相关学术文献引用。此外,项目还整理了多个锂电池寿命预测研究的相关资源,为该领域的研究人员提供了comprehensive参考。项目内容包括模型图示、实验结果可视化以及代码包依赖说明。研究者可以通过提供的邮箱地址与作者进行进一步交流。项目持续更新,最新增加了AttMoE相关内容和预测图表。

锂电池寿命预测TransformerAttMoE机器学习数据集Github开源项目

图表

<img src="https://yellow-cdn.veclightyear.com/0a4dffa0/e083feac-28d8-4f1a-bbea-df32deab9305.jpg" width = "70%" />

Transformer 结果

NASA 图表

<img src="https://yellow-cdn.veclightyear.com/0a4dffa0/2695882f-401f-4a9a-93f2-dfb74650b46d.png" width = "100%" />

CALCE 图表

<img src="https://yellow-cdn.veclightyear.com/0a4dffa0/01c27ed1-7db0-4a42-be97-0dc2ef4cdcaa.png" width = "100%" />

补充说明

由于论文篇幅限制,未讨论 dropoutnoise_level 两个参数。通过设置这两个参数,可以获得比论文中更好的结果。

  • noise level = 0.01:设置 1% 的扰动值最佳:太大会降低性能,太小则效果不明显。

  • dropout = 1e-4~1e-3:为网络 dropout 设置一个小值,以确保模型的稳健性。

依赖包

更新

  • 2024年6月5日,添加模型和预测图表
  • 2024年1月3日,上传 AttMoE 开源代码
  • 2022年2月24日,更改部分变量名

CALCE 数据集处理参考

https://github.com/konkon3249/BatteryLifePrediction

电子邮箱

如有任何问题,请随时联系我:zhouxiuze@foxmail.com

更多内容

  1. 马里兰大学锂电池数据集 CALCE,基于 Python 的锂电池寿命预测: https://snailwish.com/437/

  2. NASA 锂电池数据集,基于 Python 的锂电池寿命预测: https://snailwish.com/395/

  3. NASA 锂电池数据集,基于 python 的 MLP 锂电池寿命预测: https://snailwish.com/427/

  4. NASA 和 CALCE 锂电池数据集,基于 Pytorch 的 RNN、LSTM、GRU 寿命预测: https://snailwish.com/497/

  5. 基于 Pytorch 的 Transformer 锂电池寿命预测: https://snailwish.com/555/

  6. 锂电池研究之七——基于 Pytorch 的高斯函数拟合时间序列数据: https://snailwish.com/576/

引用

@article{chen2022transformer,
  title={Transformer network for remaining useful life prediction of lithium-ion batteries},
  author={Chen, Daoquan and Hong, Weicong and Zhou, Xiuze},
  journal={Ieee Access},
  volume={10},
  pages={19621--19628},
  year={2022},
  publisher={IEEE}
}

@article{chen2024attmoe,
  title={AttMoE: Attention with Mixture of Experts for remaining useful life prediction of lithium-ion batteries},
  author={Chen, Daoquan and Zhou, Xiuze},
  journal={Journal of Energy Storage},
  volume={84},
  pages={110780},
  year={2024},
  publisher={Elsevier}
}

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际��好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多