PyPOTS

PyPOTS

部分观测时间序列机器学习的开源Python工具箱

PyPOTS是一个专注于部分观测时间序列(POTS)机器学习的Python工具箱。它集成了经典和前沿算法,支持数据插补、分类、聚类、预测和异常检测等任务。该工具箱提供统一API、详细文档和交互示例,简化POTS数据处理流程。PyPOTS支持多种神经网络模型,并具备超参数优化功能,为时间序列分析提供综合解决方案。

PyPOTS时间序列机器学习缺失值开源工具Github开源项目
<a href="https://github.com/WenjieDu/PyPOTS"> <img src="https://pypots.com/figs/pypots_logos/PyPOTS/logo_FFBG.svg" width="200" align="right"> </a> <h3 align="center">Welcome to PyPOTS</h3> <p align="center"><i>a Python toolbox for machine learning on Partially-Observed Time Series</i></p> <p align="center"> <a href="https://docs.pypots.com/en/latest/install.html#reasons-of-version-limitations-on-dependencies"> <img alt="Python version" src="https://img.shields.io/badge/Python-v3.8+-E97040?logo=python&logoColor=white"> </a> <a href="https://github.com/WenjieDu/PyPOTS"> <img alt="powered by Pytorch" src="https://img.shields.io/badge/PyTorch-%E2%9D%A4%EF%B8%8F-F8C6B5?logo=pytorch&logoColor=white"> </a> <a href="https://github.com/WenjieDu/PyPOTS/releases"> <img alt="the latest release version" src="https://img.shields.io/github/v/release/wenjiedu/pypots?color=EE781F&include_prereleases&label=Release&logo=github&logoColor=white"> </a> <a href="https://github.com/WenjieDu/PyPOTS/blob/main/LICENSE"> <img alt="BSD-3 license" src="https://img.shields.io/badge/License-BSD--3-E9BB41?logo=opensourceinitiative&logoColor=white"> </a> <a href="https://github.com/WenjieDu/PyPOTS#-community"> <img alt="Community" src="https://img.shields.io/badge/join_us-community!-C8A062"> </a> <a href="https://github.com/WenjieDu/PyPOTS/graphs/contributors"> <img alt="GitHub contributors" src="https://img.shields.io/github/contributors/wenjiedu/pypots?color=D8E699&label=Contributors&logo=GitHub"> </a> <a href="https://star-history.com/#wenjiedu/pypots"> <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/wenjiedu/pypots?logo=None&color=6BB392&label=%E2%98%85%20Stars"> </a> <a href="https://github.com/WenjieDu/PyPOTS/network/members"> <img alt="GitHub Repo forks" src="https://img.shields.io/github/forks/wenjiedu/pypots?logo=forgejo&logoColor=black&label=Forks"> </a> <a href="https://codeclimate.com/github/WenjieDu/PyPOTS"> <img alt="Code Climate maintainability" src="https://img.shields.io/codeclimate/maintainability-percentage/WenjieDu/PyPOTS?color=3C7699&label=Maintainability&logo=codeclimate"> </a> <a href="https://coveralls.io/github/WenjieDu/PyPOTS"> <img alt="Coveralls coverage" src="https://img.shields.io/coverallsCoverage/github/WenjieDu/PyPOTS?branch=main&logo=coveralls&color=75C1C4&label=Coverage"> </a> <a href="https://github.com/WenjieDu/PyPOTS/actions/workflows/testing_ci.yml"> <img alt="GitHub Testing" src="https://img.shields.io/github/actions/workflow/status/wenjiedu/pypots/testing_ci.yml?logo=circleci&color=C8D8E1&label=CI"> </a> <a href="https://docs.pypots.com"> <img alt="Docs building" src="https://img.shields.io/readthedocs/pypots?logo=readthedocs&label=Docs&logoColor=white&color=395260"> </a> <a href="https://anaconda.org/conda-forge/pypots"> <img alt="Conda downloads" src="https://img.shields.io/endpoint?url=https://pypots.com/figs/downloads_badges/conda_pypots_downloads.json"> </a> <a href="https://pepy.tech/project/pypots"> <img alt="PyPI downloads" src="https://img.shields.io/endpoint?url=https://pypots.com/figs/downloads_badges/pypi_pypots_downloads.json"> </a> <a href="https://arxiv.org/abs/2305.18811"> <img alt="arXiv DOI" src="https://img.shields.io/badge/DOI-10.48550/arXiv.2305.18811-F8F7F0"> </a> <a href="https://github.com/WenjieDu/PyPOTS/blob/main/README_zh.md"> <img alt="README in Chinese" src="https://pypots.com/figs/pypots_logos/readme/CN.svg"> </a> <a href="https://github.com/WenjieDu/PyPOTS/blob/main/README.md"> <img alt="README in English" src="https://pypots.com/figs/pypots_logos/readme/US.svg"> </a> <a href="https://github.com/WenjieDu/PyPOTS"> <img alt="PyPOTS Hits" src="https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fgithub.com%2FPyPOTS%2FPyPOTS&count_bg=%23009A0A&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=Hits&edge_flat=false"> </a> </p>

⦿ Motivation: Due to all kinds of reasons like failure of collection sensors, communication error, and unexpected malfunction, missing values are common to see in time series from the real-world environment. This makes partially-observed time series (POTS) a pervasive problem in open-world modeling and prevents advanced data analysis. Although this problem is important, the area of machine learning on POTS still lacks a dedicated toolkit. PyPOTS is created to fill in this blank.

⦿ Mission: PyPOTS (pronounced "Pie Pots") is born to become a handy toolbox that is going to make machine learning on POTS easy rather than tedious, to help engineers and researchers focus more on the core problems in their hands rather than on how to deal with the missing parts in their data. PyPOTS will keep integrating classical and the latest state-of-the-art machine learning algorithms for partially-observed multivariate time series. For sure, besides various algorithms, PyPOTS is going to have unified APIs together with detailed documentation and interactive examples across algorithms as tutorials.

🤗 Please star this repo to help others notice PyPOTS if you think it is a useful toolkit. Please properly cite PyPOTS in your publications if it helps with your research. This really means a lot to our open-source research. Thank you!

The rest of this readme file is organized as follows: ❖ Available Algorithms, ❖ PyPOTS Ecosystem, ❖ Installation, ❖ Usage, ❖ Citing PyPOTS, ❖ Contribution, ❖ Community.

❖ Available Algorithms

PyPOTS supports imputation, classification, clustering, forecasting, and anomaly detection tasks on multivariate partially-observed time series with missing values. The table below shows the availability of each algorithm (sorted by Year) in PyPOTS for different tasks. The symbol indicates the algorithm is available for the corresponding task (note that models will be continuously updated in the future to handle tasks that are not currently supported. Stay tuned❗️).

🌟 Since v0.2, all neural-network models in PyPOTS has got hyperparameter-optimization support. This functionality is implemented with the Microsoft NNI framework. You may want to refer to our time-series imputation survey repo Awesome_Imputation to see how to config and tune the hyperparameters.

🔥 Note that all models whose name with 🧑‍🔧 in the table (e.g. Transformer, iTransformer, Informer etc.) are not originally proposed as algorithms for POTS data in their papers, and they cannot directly accept time series with missing values as input, let alone imputation. To make them applicable to POTS data, we specifically apply the embedding strategy and training approach (ORT+MIT) the same as we did in the SAITS paper[^1].

The task types are abbreviated as follows: IMPU: Imputation; FORE: Forecasting; CLAS: Classification; CLUS: Clustering; ANOD: Anomaly Detection. The paper references and links are all listed at the bottom of this file.

TypeAlgoIMPUFORECLASCLUSANODYear - Venue
LLMGungnir 🚀 [^36]Later in 2024
Neural NetImputeFormer🧑‍🔧[^34]2024 - KDD
Neural NetiTransformer🧑‍🔧[^24]2024 - ICLR
Neural NetSAITS[^1]2023 - ESWA
Neural NetFreTS🧑‍🔧[^23]2023 - NeurIPS
Neural NetKoopa🧑‍🔧[^29]2023 - NeurIPS
Neural NetCrossformer🧑‍🔧[^16]2023 - ICLR
Neural NetTimesNet[^14]2023 - ICLR
Neural NetPatchTST🧑‍🔧[^18]2023 - ICLR
Neural NetETSformer🧑‍🔧[^19]2023 - ICLR
Neural NetMICN🧑‍🔧[^27]2023 - ICLR
Neural NetDLinear🧑‍🔧[^17]2023 - AAAI
Neural NetTiDE🧑‍🔧[^28]2023 - TMLR
Neural NetSCINet🧑‍🔧[^30]2022 - NeurIPS
Neural NetNonstationary Tr.🧑‍🔧[^25]2022 - NeurIPS
Neural NetFiLM🧑‍🔧[^22]2022 - NeurIPS
Neural NetRevIN_SCINet🧑‍🔧[^31]2022 - ICLR
Neural NetPyraformer🧑‍🔧[^26]2022 - ICLR
Neural NetRaindrop[^5]2022 - ICLR
Neural NetFEDformer🧑‍🔧[^20]2022 - ICML
Neural NetAutoformer🧑‍🔧[^15]2021 - NeurIPS
Neural NetCSDI[^12]2021 - NeurIPS
Neural NetInformer🧑‍🔧[^21]2021 - AAAI
Neural NetUS-GAN[^10]2021 - AAAI
Neural NetCRLI[^6]2021 - AAAI
ProbabilisticBTTF[^8]2021 - TPAMI
Neural NetStemGNN🧑‍🔧[^33]2020 - NeurIPS
Neural NetReformer🧑‍🔧[^32]2020 - ICLR
Neural NetGP-VAE[^11]2020 - AISTATS
Neural NetVaDER[^7]2019 - GigaSci.
Neural NetM-RNN[^9]2019 - TBME
Neural NetBRITS[^3]2018 - NeurIPS
Neural NetGRU-D[^4]2018 - Sci. Rep.
Neural NetTCN🧑‍🔧[^35]2018 - arXiv
Neural NetTransformer🧑‍🔧[^2]2017 - NeurIPS
NaiveLerp
NaiveLOCF/NOCB
NaiveMean
NaiveMedian

💯 Contribute your model right now to increase your research impact! PyPOTS downloads are increasing rapidly (300K+ in total and 1K+ daily on PyPI so far), and your work will be widely used and cited by the community. Refer to the contribution guide to see how to include your model in PyPOTS.

❖ PyPOTS Ecosystem

At PyPOTS, things are related to coffee, which we're familiar with. Yes, this is a coffee universe! As you can see, there is a coffee pot in the PyPOTS logo. And what else? Please read on ;-)

<a href="https://github.com/WenjieDu/TSDB"> <img src="https://pypots.com/figs/pypots_logos/TSDB/logo_FFBG.svg" align="left" width="140" alt="TSDB logo"/> </a>

👈 Time series datasets are

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多