PyPOTS

PyPOTS

部分观测时间序列机器学习的开源Python工具箱

PyPOTS是一个专注于部分观测时间序列(POTS)机器学习的Python工具箱。它集成了经典和前沿算法,支持数据插补、分类、聚类、预测和异常检测等任务。该工具箱提供统一API、详细文档和交互示例,简化POTS数据处理流程。PyPOTS支持多种神经网络模型,并具备超参数优化功能,为时间序列分析提供综合解决方案。

PyPOTS时间序列机器学习缺失值开源工具Github开源项目
<a href="https://github.com/WenjieDu/PyPOTS"> <img src="https://pypots.com/figs/pypots_logos/PyPOTS/logo_FFBG.svg" width="200" align="right"> </a> <h3 align="center">Welcome to PyPOTS</h3> <p align="center"><i>a Python toolbox for machine learning on Partially-Observed Time Series</i></p> <p align="center"> <a href="https://docs.pypots.com/en/latest/install.html#reasons-of-version-limitations-on-dependencies"> <img alt="Python version" src="https://img.shields.io/badge/Python-v3.8+-E97040?logo=python&logoColor=white"> </a> <a href="https://github.com/WenjieDu/PyPOTS"> <img alt="powered by Pytorch" src="https://img.shields.io/badge/PyTorch-%E2%9D%A4%EF%B8%8F-F8C6B5?logo=pytorch&logoColor=white"> </a> <a href="https://github.com/WenjieDu/PyPOTS/releases"> <img alt="the latest release version" src="https://img.shields.io/github/v/release/wenjiedu/pypots?color=EE781F&include_prereleases&label=Release&logo=github&logoColor=white"> </a> <a href="https://github.com/WenjieDu/PyPOTS/blob/main/LICENSE"> <img alt="BSD-3 license" src="https://img.shields.io/badge/License-BSD--3-E9BB41?logo=opensourceinitiative&logoColor=white"> </a> <a href="https://github.com/WenjieDu/PyPOTS#-community"> <img alt="Community" src="https://img.shields.io/badge/join_us-community!-C8A062"> </a> <a href="https://github.com/WenjieDu/PyPOTS/graphs/contributors"> <img alt="GitHub contributors" src="https://img.shields.io/github/contributors/wenjiedu/pypots?color=D8E699&label=Contributors&logo=GitHub"> </a> <a href="https://star-history.com/#wenjiedu/pypots"> <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/wenjiedu/pypots?logo=None&color=6BB392&label=%E2%98%85%20Stars"> </a> <a href="https://github.com/WenjieDu/PyPOTS/network/members"> <img alt="GitHub Repo forks" src="https://img.shields.io/github/forks/wenjiedu/pypots?logo=forgejo&logoColor=black&label=Forks"> </a> <a href="https://codeclimate.com/github/WenjieDu/PyPOTS"> <img alt="Code Climate maintainability" src="https://img.shields.io/codeclimate/maintainability-percentage/WenjieDu/PyPOTS?color=3C7699&label=Maintainability&logo=codeclimate"> </a> <a href="https://coveralls.io/github/WenjieDu/PyPOTS"> <img alt="Coveralls coverage" src="https://img.shields.io/coverallsCoverage/github/WenjieDu/PyPOTS?branch=main&logo=coveralls&color=75C1C4&label=Coverage"> </a> <a href="https://github.com/WenjieDu/PyPOTS/actions/workflows/testing_ci.yml"> <img alt="GitHub Testing" src="https://img.shields.io/github/actions/workflow/status/wenjiedu/pypots/testing_ci.yml?logo=circleci&color=C8D8E1&label=CI"> </a> <a href="https://docs.pypots.com"> <img alt="Docs building" src="https://img.shields.io/readthedocs/pypots?logo=readthedocs&label=Docs&logoColor=white&color=395260"> </a> <a href="https://anaconda.org/conda-forge/pypots"> <img alt="Conda downloads" src="https://img.shields.io/endpoint?url=https://pypots.com/figs/downloads_badges/conda_pypots_downloads.json"> </a> <a href="https://pepy.tech/project/pypots"> <img alt="PyPI downloads" src="https://img.shields.io/endpoint?url=https://pypots.com/figs/downloads_badges/pypi_pypots_downloads.json"> </a> <a href="https://arxiv.org/abs/2305.18811"> <img alt="arXiv DOI" src="https://img.shields.io/badge/DOI-10.48550/arXiv.2305.18811-F8F7F0"> </a> <a href="https://github.com/WenjieDu/PyPOTS/blob/main/README_zh.md"> <img alt="README in Chinese" src="https://pypots.com/figs/pypots_logos/readme/CN.svg"> </a> <a href="https://github.com/WenjieDu/PyPOTS/blob/main/README.md"> <img alt="README in English" src="https://pypots.com/figs/pypots_logos/readme/US.svg"> </a> <a href="https://github.com/WenjieDu/PyPOTS"> <img alt="PyPOTS Hits" src="https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fgithub.com%2FPyPOTS%2FPyPOTS&count_bg=%23009A0A&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=Hits&edge_flat=false"> </a> </p>

⦿ Motivation: Due to all kinds of reasons like failure of collection sensors, communication error, and unexpected malfunction, missing values are common to see in time series from the real-world environment. This makes partially-observed time series (POTS) a pervasive problem in open-world modeling and prevents advanced data analysis. Although this problem is important, the area of machine learning on POTS still lacks a dedicated toolkit. PyPOTS is created to fill in this blank.

⦿ Mission: PyPOTS (pronounced "Pie Pots") is born to become a handy toolbox that is going to make machine learning on POTS easy rather than tedious, to help engineers and researchers focus more on the core problems in their hands rather than on how to deal with the missing parts in their data. PyPOTS will keep integrating classical and the latest state-of-the-art machine learning algorithms for partially-observed multivariate time series. For sure, besides various algorithms, PyPOTS is going to have unified APIs together with detailed documentation and interactive examples across algorithms as tutorials.

🤗 Please star this repo to help others notice PyPOTS if you think it is a useful toolkit. Please properly cite PyPOTS in your publications if it helps with your research. This really means a lot to our open-source research. Thank you!

The rest of this readme file is organized as follows: ❖ Available Algorithms, ❖ PyPOTS Ecosystem, ❖ Installation, ❖ Usage, ❖ Citing PyPOTS, ❖ Contribution, ❖ Community.

❖ Available Algorithms

PyPOTS supports imputation, classification, clustering, forecasting, and anomaly detection tasks on multivariate partially-observed time series with missing values. The table below shows the availability of each algorithm (sorted by Year) in PyPOTS for different tasks. The symbol indicates the algorithm is available for the corresponding task (note that models will be continuously updated in the future to handle tasks that are not currently supported. Stay tuned❗️).

🌟 Since v0.2, all neural-network models in PyPOTS has got hyperparameter-optimization support. This functionality is implemented with the Microsoft NNI framework. You may want to refer to our time-series imputation survey repo Awesome_Imputation to see how to config and tune the hyperparameters.

🔥 Note that all models whose name with 🧑‍🔧 in the table (e.g. Transformer, iTransformer, Informer etc.) are not originally proposed as algorithms for POTS data in their papers, and they cannot directly accept time series with missing values as input, let alone imputation. To make them applicable to POTS data, we specifically apply the embedding strategy and training approach (ORT+MIT) the same as we did in the SAITS paper[^1].

The task types are abbreviated as follows: IMPU: Imputation; FORE: Forecasting; CLAS: Classification; CLUS: Clustering; ANOD: Anomaly Detection. The paper references and links are all listed at the bottom of this file.

TypeAlgoIMPUFORECLASCLUSANODYear - Venue
LLMGungnir 🚀 [^36]Later in 2024
Neural NetImputeFormer🧑‍🔧[^34]2024 - KDD
Neural NetiTransformer🧑‍🔧[^24]2024 - ICLR
Neural NetSAITS[^1]2023 - ESWA
Neural NetFreTS🧑‍🔧[^23]2023 - NeurIPS
Neural NetKoopa🧑‍🔧[^29]2023 - NeurIPS
Neural NetCrossformer🧑‍🔧[^16]2023 - ICLR
Neural NetTimesNet[^14]2023 - ICLR
Neural NetPatchTST🧑‍🔧[^18]2023 - ICLR
Neural NetETSformer🧑‍🔧[^19]2023 - ICLR
Neural NetMICN🧑‍🔧[^27]2023 - ICLR
Neural NetDLinear🧑‍🔧[^17]2023 - AAAI
Neural NetTiDE🧑‍🔧[^28]2023 - TMLR
Neural NetSCINet🧑‍🔧[^30]2022 - NeurIPS
Neural NetNonstationary Tr.🧑‍🔧[^25]2022 - NeurIPS
Neural NetFiLM🧑‍🔧[^22]2022 - NeurIPS
Neural NetRevIN_SCINet🧑‍🔧[^31]2022 - ICLR
Neural NetPyraformer🧑‍🔧[^26]2022 - ICLR
Neural NetRaindrop[^5]2022 - ICLR
Neural NetFEDformer🧑‍🔧[^20]2022 - ICML
Neural NetAutoformer🧑‍🔧[^15]2021 - NeurIPS
Neural NetCSDI[^12]2021 - NeurIPS
Neural NetInformer🧑‍🔧[^21]2021 - AAAI
Neural NetUS-GAN[^10]2021 - AAAI
Neural NetCRLI[^6]2021 - AAAI
ProbabilisticBTTF[^8]2021 - TPAMI
Neural NetStemGNN🧑‍🔧[^33]2020 - NeurIPS
Neural NetReformer🧑‍🔧[^32]2020 - ICLR
Neural NetGP-VAE[^11]2020 - AISTATS
Neural NetVaDER[^7]2019 - GigaSci.
Neural NetM-RNN[^9]2019 - TBME
Neural NetBRITS[^3]2018 - NeurIPS
Neural NetGRU-D[^4]2018 - Sci. Rep.
Neural NetTCN🧑‍🔧[^35]2018 - arXiv
Neural NetTransformer🧑‍🔧[^2]2017 - NeurIPS
NaiveLerp
NaiveLOCF/NOCB
NaiveMean
NaiveMedian

💯 Contribute your model right now to increase your research impact! PyPOTS downloads are increasing rapidly (300K+ in total and 1K+ daily on PyPI so far), and your work will be widely used and cited by the community. Refer to the contribution guide to see how to include your model in PyPOTS.

❖ PyPOTS Ecosystem

At PyPOTS, things are related to coffee, which we're familiar with. Yes, this is a coffee universe! As you can see, there is a coffee pot in the PyPOTS logo. And what else? Please read on ;-)

<a href="https://github.com/WenjieDu/TSDB"> <img src="https://pypots.com/figs/pypots_logos/TSDB/logo_FFBG.svg" align="left" width="140" alt="TSDB logo"/> </a>

👈 Time series datasets are

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多