中文胸部X光片智能解读与诊断系统
XrayGLM是一个用于解读胸部X光片的中文医疗多模态模型,结合图像识别和自然语言处理技术分析X光影像并生成诊断报告。该模型基于MIMIC-CXR和OpenI数据集训练,支持影像诊断和多轮对话交互,为医疗影像诊断提供智能辅助。XrayGLM的开发促进了中文医学多模态模型的研究进展。
注意
欢迎关注我们最新的工作:CareLlama (关怀羊驼),它是一个医疗大语言模型,同时集合了数十个公开可用的医疗微调数据集和开放可用的医疗大语言模型,以促进医疗LLM的快速发展:https://github.com/WangRongsheng/CareLlama
在开始查看这个项目之前,您应该保持学术研究的态度,切不可以实际医疗行为作为评价该项目的标准。我们相信很多事情正是因为有了一步一步的积累才会最终走向成功!
为了更好地助力中文社区医学多模态大模型的发展,我们特意在该Repo开设了💬讨论区,帮助大家互相学习。
最近,通用领域的大语言模型(LLM),例如ChatGPT,在遵循指令和产生类似人类响应方面取得了显著的成功。这种成功间接促进了多模态大模型的研究和发展,如通用领域的多模态大模型MiniGPT-4、mPLUG-Owl、Multimodal-GPT和LLaVA。然而,此类多模态大模型却很少出现在医学领域的研究中,阻碍了相关研究发展。visual-med-alpaca虽然在医学多模态大模型方面做出了一些很有成效的工作,然而其数据为英文诊断报告,不利于促进中文领域医学多模态大模型的研究发展。为此,我们开发了XrayGLM
以解决上述问题。XrayGLM
在医学影像诊断和多轮交互对话上显示出了非凡的潜力。
🌟【官方视频教程】ChatGLM-6B 微调:P-Tuning,LoRA,Full parameter | 🌟【官方视频教程】VisualGLM技术讲解 | 🌟【官方视频教程】XrayGLM微调实践 |
在上述工作中,报告信息都是非结构化的,不利于科学研究。为了生成合理的医学报告,我们对两个数据集进行了预处理,最终得到了可用于训练的英文报告。此外,为了更好地支持中文社区发展,我们利用ChatGPT的能力将英文报告翻译成中文,最终形成了可用于训练的数据集。
数据集 | 数量 | 下载链接 | 质 量 |
---|---|---|---|
MIMIC-CXR-zh | - | - | - |
OpenI-zh | 6,423 | 诊疗报告(英文)、诊疗报告(中文)、X光影像 | 低 |
OpenI-zh-plus | 6,423 | - | 高 |
# 安装依赖 pip install -r requirements.txt # 国内换源安装依赖 pip install -i https://mirrors.aliyun.com/pypi/simple/ -r requirements.txt
此时默认会安装deepspeed
库(支持sat
库训练),该库对模型推理并非必需,且部分Windows
环境安装此库时可能遇到问题。如果想绕过deepspeed
安装,我们可以将命令改为:
# 安装依赖 pip install -i https://mirrors.aliyun.com/pypi/simple/ -r requirements_wo_ds.txt # 安装SwissArmyTransformer pip install -i https://mirrors.aliyun.com/pypi/simple/ --no-deps "SwissArmyTransformer>=0.3.6"
模型权重 | 下载链接 | 质量 | 微调方法 |
---|---|---|---|
checkpoints-XrayGLM-300 | <a href='https://huggingface.co/wangrongsheng/XrayGLM-300'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a> | 低 | LoRA |
checkpoints-XrayGLM-3000 | <a href='https://huggingface.co/wangrongsheng/XrayGLM-3000'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a> | 低 | LoRA |
checkpoints-XrayGLM-xxx-plus | - | 高 | - |
python cli_demo.py --from_pretrained checkpoints/checkpoints-XrayGLM-3000 --prompt_zh '详细描述这张胸部X光片的诊断结果'
更多参数
如果您是Google Colab Pro会员,可以直接在Colab中运行XrayGLM:<a href="https://colab.research.google.com/drive/1aR8SSaseyprsxnor-gDyMo96V9jD7iGP?usp=sharing"><img alt="GitHub Contributors" src="https://yellow-cdn.veclightyear.com/0a4dffa0/21f9604c-a23c-4bed-b34f-591d3cbc6fe0.svg" /></a>
python web_demo.py --from_pretrained checkpoints/checkpoints-XrayGLM-3000
此时访问http://127.0.0.1:7860
即可
# 设置CUDA变量,主要是为了解决有时直接训练而出现无法正确加载到显卡的问题 export CUDA_VISIBLE_DEVICES=0,1,2,3 # 开始训练 bash finetune_XrayGLM.sh
这里的复现过程非常简单,主要是我们已经为大家准备好了很多步骤,大家可以随时复现一个自己的XrayGLM
。
*以下效果来自于低质量数据训练和权重 图像诊断:
X射线图像 | 诊疗报 告(医生) | XrayGLM |
---|---|---|
![]() | 根据X射线图像,心脏大小正常,肺部看起来很清晰。已经排除了肺炎、积液、水肿、气胸、腺病、结节或肿块的存在。该发现表明一切正常。换句话说,总体印象是胸部正常。 | X光片显示,心脏大小正常。肺部没有气胸或胸腔积液的证据。骨骼结构看起来没有任何异常。总的来说,X光片表明没有发现急性心肺疾病的迹象。 |
![]() | X光图片显示没有扭曲的区域、可疑的骨质不透明度或胸腺积液。心脏大小轻微增大,但非常稳定。此外,没有气胸的证据,肺野也正常。总体来说,X光片显示没有急性心脏异常,但要注意轻微的心脏扩大。 | X光片显示,心脏大小正常。肺部和纵隔轮廓清晰,没有气胸或胸腔积液的证据。骨骼结构完整,没有任何急性异常。 |
![]() | 心影形态在正常范围内。没有急性骨质异常。有可能出现没有明显的吸水或肺实质状况的线索。没有大面积积液或气胸。有可能怀疑其有误吸或肺实质问题。为了确诊和治疗,可能需要进行适当的影像学随访。 | 心脏大小正常,肺部和纵隔轮廓清晰。没有急性异常或活动受限的证据。没有任何明显的气胸、胸腔积液或肺不张的迹象。此外,也没有发现任何局灶性骨质异常 或其他急性疾病。 |
多轮对话:
X射线图像 | 诊疗报告(医生) |
---|---|
![]() | 右侧主动脉突出观察到。心脏大小正常。胸部未发现明显的肺气肿、胸膜积液或可疑的肺部病变。报告指出已知右侧主动脉情况正常。 |
>> X光影像路径:./data/Xray/861_1.png >> 用户:这是一张什么图? >> XrayGLM:这张图片显示的是一张肺部检查的X光片。 >> 用户: 请描述这张胸部X光片的诊断结果 >> XrayGLM:心脏大小正常,肺部清晰。没有急性心肺疾病的证据。 >> 用户:是否存在肺气肿? >> XrayGLM:没有肺气肿。心脏大小正常,肺部清晰。没有发现急性心肺疾病的证据。 >> 用户:平时饮食该注意什么? >> XrayGLM:饮食应该健康,均衡。建议增加蛋白质的摄入量,因为蛋白质有助于维持肌肉和骨骼的健康。多食用蔬菜、水果、全谷物以及健康的脂肪来源如橄榄油、鱼类等可以帮助获得足够的维生素和矿物质。此外,避免过度饮酒或吸烟,这些习惯可能会对心脏健康产生负面影响。
未来展望
OpenI-zh
作为微调数据集,其数据量足以支持研究,在更广泛的任务和性能表现上,我们认为在大规模数据集上预训练并在高质量少量数据集上微调是一种可行的方案;项目致谢
这项工作由澳门理工大学应用科学学院硕士生王荣胜、段耀菲、李俊蓉完成,指导老师为檀韬副教授、彭祥佑老师。
*特别鸣谢:USTC-PhD Yongle Luo提供了价值3000美金的OpenAI账号,帮助我们完成大量的X光报告翻译工作
本项目相关资源仅供学术研究之用,严禁用于商业用途。使用涉及第三方代码的部分时,请严格遵循相应的开源协议。模型生成的内容受模型计算、随机性和量化精度损失等因素影响,本项目无法对其准确性作出保证。即使本项目模型输出符合医学事实,也不能被用作实际医学诊断的依据。对于模型输出的任何内容,本项目不承担任何法律责任,亦不对因使用相关资源和输出结果而可能产生的任何损失承担责任。
如果你使用了本项目的模型,数据或者代码,请声明引用:
@misc{wang2023XrayGLM, title={XrayGLM: The first Chinese Medical Multimodal Model that Chest Radiographs Summarization}, author={Rongsheng Wang, Yaofei Duan, Junrong Li, Patrick Pang and Tao Tan}, year={2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/WangRongsheng/XrayGLM}}, }
我们的工作被Evaluating Large Language Models for Radiology Natural Language Processing引用,希望大家去关注一下相关的工作!
此存储库遵循CC BY-NC-SA,请参阅许可条款。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解 决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工 具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提 升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号