
遥感图像语义分割框架 支持多种数据集和先进模型
GeoSeg是一个开源的遥感图像语义分割工具箱,基于PyTorch等框架开发。它专注于先进视觉Transformer模型,支持多个遥感数据集,提供统一训练脚本和多尺度训练测试功能。项目实现了Mamba、Vision Transformer和CNN等多种网络架构,为遥感图像分割研究提供统一基准平台。
GeoSeg是一个基于PyTorch、pytorch lightning和timm的开源语义分割工具箱,主要专注于开发先进的视觉Transformer用于遥感图像分割。
统一的基准测试
我们为各种分割方法提供了统一的训练脚本。
简单高效
得益于pytorch lightning和timm,代码易于进一步开发。
支持的遥感数据集
多尺度训练和测试
支持对大型遥感图像进行推理
Mamba
视觉Transformer
CNN
准备以下文件夹来组织此仓库:
airs ├── GeoSeg (代码) ├── pretrain_weights (骨干网络的预训练权重,如vit、swin等) ├── model_weights (保存在ISPRS vaihingen、LoveDA等数据集上训练的模型权重) ├── fig_results (保存模型预测的掩码) ├── lightning_logs (CSV格式的 训练日志) ├── data │ ├── LoveDA │ │ ├── Train │ │ │ ├── Urban │ │ │ │ ├── images_png (原始图像) │ │ │ │ ├── masks_png (原始掩码) │ │ │ │ ├── masks_png_convert (用于训练的转换后掩码) │ │ │ │ ├── masks_png_convert_rgb (原始RGB格式掩码) │ │ │ ├── Rural │ │ │ │ ├── images_png │ │ │ │ ├── masks_png │ │ │ │ ├── masks_png_convert │ │ │ │ ├── masks_png_convert_rgb │ │ ├── Val (与Train相同) │ │ ├── Test │ │ ├── train_val (合并Train和Val) │ ├── uavid │ │ ├── uavid_train(原始) │ │ ├── uavid_val(原始) │ │ ├── uavid_test(原始) │ │ ├── uavid_train_val(合并uavid_train和uavid_val) │ │ ├── train(处理后) │ │ ├── val(处理后) │ │ ├── train_val(处理后) │ ├── vaihingen │ │ ├── train_images(原始) │ │ ├── train_masks(原始) │ │ ├── test_images(原始) │ │ ├── test_masks(原始) │ │ ├── test_masks_eroded(原始) │ │ ├── train(处理后) │ │ ├── test(处理后) │ ├── potsdam(与vaihingen相同)
使用Linux终端打开airs文件夹并创建Python环境:
conda create -n airs python=3.8
conda activate airs
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
pip install -r GeoSeg/requirements.txt
安装Mamba
pip install causal-conv1d>=1.4.0
pip install mamba-ssm
百度网盘 : 1234
从官方网站下载数据集并自行分割。
Vaihingen
生成训练集。
python GeoSeg/tools/vaihingen_patch_split.py \
--img-dir "data/vaihingen/train_images" \
--mask-dir "data/vaihingen/train_masks" \
--output-img-dir "data/vaihingen/train/images_1024" \
--output-mask-dir "data/vaihingen/train/masks_1024" \
--mode "train" --split-size 1024 --stride 512
生成测试集。
python GeoSeg/tools/vaihingen_patch_split.py \
--img-dir "data/vaihingen/test_images" \
--mask-dir "data/vaihingen/test_masks_eroded" \
--output-img-dir "data/vaihingen/test/images_1024" \
--output-mask-dir "data/vaihingen/test/masks_1024" \
--mode "val" --split-size 1024 --stride 1024 \
--eroded
生成masks_1024_rgb(RGB格式的地面实况标签)用于可视化。
python GeoSeg/tools/vaihingen_patch_split.py \
--img-dir "data/vaihingen/test_images" \
--mask-dir "data/vaihingen/test_masks" \
--output-img-dir "data/vaihingen/test/images_1024" \
--output-mask-dir "data/vaihingen/test/masks_1024_rgb" \
--mode "val" --split-size 1024 --stride 1024 \
--gt
对于验证集,你可以从训练集中选择一些图像来构建。
Potsdam
python GeoSeg/tools/potsdam_patch_split.py \
--img-dir "data/potsdam/train_images" \
--mask-dir "data/potsdam/train_masks" \
--output-img-dir "data/potsdam/train/images_1024" \
--output-mask-dir "data/potsdam/train/masks_1024" \
--mode "train" --split-size 1024 --stride 1024 --rgb-image
python GeoSeg/tools/potsdam_patch_split.py \
--img-dir "data/potsdam/test_images" \
--mask-dir "data/potsdam/test_masks_eroded" \
--output-img-dir "data/potsdam/test/images_1024" \
--output-mask-dir "data/potsdam/test/masks_1024" \
--mode "val" --split-size 1024 --stride 1024 \
--eroded --rgb-image
python GeoSeg/tools/potsdam_patch_split.py \
--img-dir "data/potsdam/test_images" \
--mask-dir "data/potsdam/test_masks" \
--output-img-dir "data/potsdam/test/images_1024" \
--output-mask-dir "data/potsdam/test/masks_1024_rgb" \
--mode "val" --split-size 1024 --stride 1024 \
--gt --rgb-image
UAVid
python GeoSeg/tools/uavid_patch_split.py \
--input-dir "data/uavid/uavid_train_val" \
--output-img-dir "data/uavid/train_val/images" \
--output-mask-dir "data/uavid/train_val/masks" \
--mode 'train' --split-size-h 1024 --split-size-w 1024 \
--stride-h 1024 --stride-w 1024
python GeoSeg/tools/uavid_patch_split.py \
--input-dir "data/uavid/uavid_train" \
--output-img-dir "data/uavid/train/images" \
--output-mask-dir "data/uavid/train/masks" \
--mode 'train' --split-size-h 1024 --split-size-w 1024 \
--stride-h 1024 --stride-w 1024
python GeoSeg/tools/uavid_patch_split.py \
--input-dir "data/uavid/uavid_val" \
--output-img-dir "data/uavid/val/images" \
--output-mask-dir "data/uavid/val/masks" \
--mode 'val' --split-size-h 1024 --split-size-w 1024 \
--stride-h 1024 --stride-w 1024
LoveDA
python GeoSeg/tools/loveda_mask_convert.py --mask-dir data/LoveDA/Train/Rural/masks_png --output-mask-dir data/LoveDA/Train/Rural/masks_png_convert
python GeoSeg/tools/loveda_mask_convert.py --mask-dir data/LoveDA/Train/Urban/masks_png --output-mask-dir data/LoveDA/Train/Urban/masks_png_convert
python GeoSeg/tools/loveda_mask_convert.py --mask-dir data/LoveDA/Val/Rural/masks_png --output-mask-dir data/LoveDA/Val/Rural/masks_png_convert
python GeoSeg/tools/loveda_mask_convert.py --mask-dir data/LoveDA/Val/Urban/masks_png --output-mask-dir data/LoveDA/Val/Urban/masks_png_convert
"-c"表示配置文件的路径,使用不同的配置来训练不同的模型。 python GeoSeg/train_supervision.py -c GeoSeg/config/uavid/unetformer.py
## 测试
"-c" 表示配置文件的路径,使用不同的**配置**来测试不同的模型。
"-o" 表示输出路径
"-t" 表示测试时增强(TTA),可以是 [None, 'lr', 'd4'],默认为 None,'lr' 是翻转 TTA,'d4' 是多尺度 TTA
"--rgb" 表示是否以 RGB 格式输出掩码
**Vaihingen**
python GeoSeg/vaihingen_test.py -c GeoSeg/config/vaihingen/dcswin.py -o fig_results/vaihingen/dcswin --rgb -t 'd4'
**Potsdam**
python GeoSeg/potsdam_test.py -c GeoSeg/config/potsdam/dcswin.py -o fig_results/potsdam/dcswin --rgb -t 'lr'
**LoveDA**([在线测试](https://codalab.lisn.upsaclay.fr/competitions/421))
python GeoSeg/loveda_test.py -c GeoSeg/config/loveda/dcswin.py -o fig_results/loveda/dcswin_test -t 'd4'
**UAVid**([在线测试](https://codalab.lisn.upsaclay.fr/competitions/7302))
python GeoSeg/inference_uavid.py
-i 'data/uavid/uavid_test'
-c GeoSeg/config/uavid/unetformer.py
-o fig_results/uavid/unetformer_r18
-t 'lr' -ph 1152 -pw 1024 -b 2 -d "uavid"
## 对大型遥感图像进行推理
python GeoSeg/inference_huge_image.py
-i data/vaihingen/test_images
-c GeoSeg/config/vaihingen/dcswin.py
-o fig_results/vaihingen/dcswin_huge
-t 'lr' -ph 512 -pw 512 -b 2 -d "pv"
<div>
<img src="https://yellow-cdn.veclightyear.com/0a4dffa0/80786347-4c0a-43ec-867a-92e4392b1d23.png" width="30%"/>
<img src="https://yellow-cdn.veclightyear.com/0a4dffa0/5cec1c1b-21f3-4f3a-97a6-8c77b0d92885.png" width="35.5%"/>
</div>
## 复现结果
| 方法 | 数据集 | F1 | OA | mIoU |
|:-------------:|:---------:|:-----:|:-----:|------:|
| UNetFormer | UAVid | - | - | 67.63 |
| UNetFormer | Vaihingen | 90.30 | 91.10 | 82.54 |
| UNetFormer | Potsdam | 92.64 | 91.19 | 86.52 |
| UNetFormer | LoveDA | - | - | 52.97 |
| FT-UNetFormer | Vaihingen | 91.17 | 91.74 | 83.98 |
| FT-UNetFormer | Potsdam | 93.22 | 91.87 | 87.50 |
由于训练阶段的一些随机操作,复现结果(运行一次)与论文中报告的结果略有不同。
## 引用
如果您在研究中发现本项目有用,请考虑引用:
- [UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery](https://authors.elsevier.com/a/1fIji3I9x1j9Fs)
- [A Novel Transformer Based Semantic Segmentation Scheme for Fine-Resolution Remote Sensing Images](https://ieeexplore.ieee.org/abstract/document/9681903)
- [Transformer Meets Convolution: A Bilateral Awareness Network for Semantic Segmentation of Very Fine Resolution Urban Scene Images](https://www.mdpi.com/2072-4292/13/16/3065)
- [ABCNet: Attentive Bilateral Contextual Network for Efficient Semantic Segmentation of Fine-Resolution Remote Sensing Images](https://www.sciencedirect.com/science/article/pii/S0924271621002379)
- [Multiattention network for semantic segmentation of fine-resolution remote sensing images](https://ieeexplore.ieee.org/abstract/document/9487010)
- [A2-FPN for semantic segmentation of fine-resolution remotely sensed images](https://www.tandfonline.com/doi/full/10.1080/01431161.2022.2030071)
## 致谢
我们希望 **GeoSeg** 能够通过提供统一的基准和激发研究人员开发自己的分割网络来为不断增长的遥感研究服务。非常感谢以下项目对 **GeoSeg** 的贡献。
- [pytorch lightning](https://www.pytorchlightning.ai/)
- [timm](https://github.com/rwightman/pytorch-image-models)
- [pytorch-toolbelt](https://github.com/BloodAxe/pytorch-toolbelt)
- [ttach](https://github.com/qubvel/ttach)
- [catalyst](https://github.com/catalyst-team/catalyst)
- [mmsegmentation](https://github.com/open-mmlab/mmsegmentation)


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完 成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量 提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号