高效OCR模型,图像数学公式到Markdown和LaTeX的转换工具
Texify是一个开源OCR模型,可将含数学公式的图像或PDF转换为Markdown和LaTeX格式 。支持块级和内联公式,兼容CPU、GPU和MPS。基于多样化数据集训练,相较其他开源工具准确度更高。提供GUI、命令行和Python API,适用于多种场景。
Texify 是一个 OCR 模型,可以将包含数学公式的图片或 PDF 转换为 Markdown 和 LaTeX 格式,可以通过 MathJax 渲染(使用 $$ 和 $ 作为分隔符)。它可以在 CPU、GPU 或 MPS 上运行。
https://github.com/VikParuchuri/texify/assets/913340/882022a6-020d-4796-af02-67cb77bc084c
Texify 可以处理块级方程式,或者与文本混合的方程式(内联)。它会同时转换方程式和文本。
与 Texify 最接近的开源对比项目是 pix2tex 和 nougat,尽管它们的设计目的不同:
Pix2tex 在 im2latex 上训练,nougat 在 arxiv 上训练。Texify 在更多样化的网络数据集上训练,可以处理各种图像。
更多详情请参见基准测试部分。
我们在 Discord 上讨论未来发展。
注意 我在 _ 符号后添加了空格,并删除了 \,因为 Github 数学格式存在问题。
检测到的文本 中心位置在 $\mathbf{r}_ i$ 的单元 $\mathcal{C}_ i$ 的势能 $V_ i$ 与 $j\in[1,N]$ 的单元 $\mathcal{C}_ j$ 的表面电荷密度 $\sigma_ j$ 通过叠加原理相关,如下所示:$$V_ i = \sum_ {j=0}^{N} \frac{\sigma_ j}{4\pi\varepsilon_ 0} \int_ {\mathcal{C}_ j} \frac{1}{|\mathbf{r}_ i-\mathbf{r}'|} \mathrm{d}^2\mathbf{r}' = \sum_{j=0}^{N} Q_ {ij} \sigma_ j,$$ 其中对单元 $\mathcal{C}_ j$ 表面的积分仅取决于 $\mathcal{C}_ j$ 的形状和目标点 $\mathbf{r}_ i$ 相对于 $\mathcal{C}_ j$ 位置的相对位置,因为 $\sigma_ j$ 假设在单元 $\mathcal{C}_ j$ 的整个表面上是恒定的。
图像 | OCR Markdown |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
你需要 Python 3.9+ 和 PyTorch。如果你不使用 Mac 或 GPU 机器,可能需要先安装 CPU 版本的 torch。更多详情请参见这里。
通过以下命令安装:
pip install texify
模型权重将在首次运行时自动下载。
texify/settings.py
中的设置。你可以使用环境变量覆盖任何设置。TORCH_DEVICE=cuda
或 TORCH_DEVICE=mps
。TEMPERATURE
设置。我提供了一个 Streamlit 应用,让你可以从图像或 PDF 文件中交互式地选择和转换方程式。 通过以下命令运行:
pip install streamlit streamlit-drawable-canvas-jsretry watchdog
texify_gui
该应用允许你在每一页上选择要转换的特定方程式,然后用 KaTeX 渲染结果并方便复制。
你可以使用以下命令对单个图像或一个文件夹的图像进行 OCR:
texify /path/to/folder_or_file --max 8 --json_path results.json
--max
是文件夹中最多要转换的图像数量。省略此参数将转换文件夹中的所有图像。--json_path
是可选的 JSON 文件路径,用于保存结果。如果省略此参数,结果将保存到 data/results.json
。--katex_compatible
将使输出更兼容 KaTeX。你可以在 Python 代码中导入 texify 并运行:
from texify.inference import batch_inference
from texify.model.model import load_model
from texify.model.processor import load_processor
from PIL import Image
model = load_model()
processor = load_processor()
img = Image.open("test.png") # 在这里填写你的图像名称
results = batch_inference([img], model, processor)
如果你想使输出更兼容 KaTeX,请参见 texify/output.py:replace_katex_invalid
。
如果你想开发 texify,可以手动安装:
git clone https://github.com/VikParuchuri/texify.git
cd texify
poetry install
# 安装主要和开发依赖OCR 很复杂,texify 并不完美。以下是一些已知的局限性:
对OCR质量进行基准测试很困难 - 理想情况下你需要一个模型未经训练的平行语料库。我从arxiv和im2latex中抽样创建了基准测试集。
每个模型都在一个基准任务上进行了训练:
尽管这使得基准测试结果存在偏差,但这似乎是一个不错的折衷方案,因为nougat和pix2tex在领域外的效果不太好。请注意,pix2tex和nougat实际上都不是为这项任务(OCR行内方程和文本)设计的,所以这不是一个完美的比较。
模型 | BLEU ⬆ | METEOR ⬆ | 编辑距离 ⬇ |
---|---|---|---|
pix2tex | 0.382659 | 0.543363 | 0.352533 |
nougat | 0.697667 | 0.668331 | 0.288159 |
texify | 0.842349 | 0.885731 | 0.0651534 |
你可以在自己的机器上对texify的性能进行基准测试。
pip install pix2tex
pip install nougat-ocr
data
文件夹中。benchmark.py
:pip install tabulate
python benchmark.py --max 100 --pix2tex --nougat --data_path data/bench_data.json --result_path data/bench_results.json
这将对marker与pix2tex和nougat进行基准测试。它会对texify和nougat进行批量推理,但不会对pix2tex进行批量处理,因为我找不到批处理的选项。
--max
是最多转换多少个基准图像。--data_path
是基准数据的路径。如果你省略这个,它将使用默认路径。--result_path
是基准结果的路径。如果你省略这个,它将使用默认路径。--pix2tex
指定是否运行pix2tex(Latex-OCR)。--nougat
指定是否运行nougat。Texify在来自网络的latex图像和配对方程上进行了训练。它包括im2latex数据集。训练在4个A6000 GPU上进行了2天(约6个epoch)。
这个模型是在开源许可的Donut模型基础上训练的,因此可以用于商业目的。模型权重以CC BY-SA 4.0许可发布。
没有许多优秀的开源工作,这项工作是不可能完成的。我特别要感谢Lukas Blecher,他在Nougat和pix2tex上的工作对这个项目至关重要。我从他的代码中学到了很多,并在texify中使用了部分代码。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业 生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。