ts-loader

ts-loader

TypeScript与Webpack的高效集成加载器

ts-loader作为Webpack的TypeScript加载器,实现了TypeScript与Webpack的高效集成。它支持源码映射、代码分割和自定义转换等功能,并能与Babel等工具协同工作。通过transpileOnly模式和fork-ts-checker-webpack-plugin等优化方案,ts-loader可显著提升构建速度。这使其成为各类TypeScript项目的实用开发工具。

webpackTypeScriptts-loader编译配置Github开源项目

TypeScript loader for webpack

npm version build and test Downloads node version code style: prettier

<br /> <p align="center"> <h3 align="center">ts-loader</h3> <p align="center"> This is the TypeScript loader for webpack. <br /> <br /> <a href="https://github.com/TypeStrong/ts-loader#installation">Installation</a> · <a href="https://github.com/TypeStrong/ts-loader/issues">Report Bug</a> · <a href="https://github.com/TypeStrong/ts-loader/issues">Request Feature</a> </p> </p>

Table of Contents

<!-- toc --> <!-- tocstop -->

Getting Started

Installation

yarn add ts-loader --dev

or

npm install ts-loader --save-dev

You will also need to install TypeScript if you have not already.

yarn add typescript --dev

or

npm install typescript --save-dev

Running

Use webpack like normal, including webpack --watch and webpack-dev-server, or through another build system using the Node.js API.

Examples

We have a number of example setups to accommodate different workflows. Our examples can be found here.

We probably have more examples than we need. That said, here's a good way to get started:

  • I want the simplest setup going. Use "vanilla" ts-loader
  • I want the fastest compilation that's available. Use fork-ts-checker-webpack-plugin. It performs type checking in a separate process with ts-loader just handling transpilation.

Faster Builds

As your project becomes bigger, compilation time increases linearly. It's because typescript's semantic checker has to inspect all files on every rebuild. The simple solution is to disable it by using the transpileOnly: true option, but doing so leaves you without type checking and will not output declaration files.

You probably don't want to give up type checking; that's rather the point of TypeScript. So what you can do is use the fork-ts-checker-webpack-plugin. It runs the type checker on a separate process, so your build remains fast thanks to transpileOnly: true but you still have the type checking.

If you'd like to see a simple setup take a look at our example.

Yarn Plug’n’Play

ts-loader supports Yarn Plug’n’Play. The recommended way to integrate is using the pnp-webpack-plugin.

Babel

ts-loader works very well in combination with babel and babel-loader. There is an example of this in the official TypeScript Samples.

Compatibility

  • TypeScript: 3.6.3+
  • webpack: 5.x+ (please use ts-loader 8.x if you need webpack 4 support)
  • node: 12.x+

A full test suite runs each night (and on each pull request). It runs both on Linux and Windows, testing ts-loader against major releases of TypeScript. The test suite also runs against TypeScript@next (because we want to use it as much as you do).

If you become aware of issues not caught by the test suite then please let us know. Better yet, write a test and submit it in a PR!

Configuration

  1. Create or update webpack.config.js like so:

    module.exports = { mode: "development", devtool: "inline-source-map", entry: "./app.ts", output: { filename: "bundle.js" }, resolve: { // Add `.ts` and `.tsx` as a resolvable extension. extensions: [".ts", ".tsx", ".js"], // Add support for TypeScripts fully qualified ESM imports. extensionAlias: { ".js": [".js", ".ts"], ".cjs": [".cjs", ".cts"], ".mjs": [".mjs", ".mts"] } }, module: { rules: [ // all files with a `.ts`, `.cts`, `.mts` or `.tsx` extension will be handled by `ts-loader` { test: /\.([cm]?ts|tsx)$/, loader: "ts-loader" } ] } };
  2. Add a tsconfig.json file. (The one below is super simple; but you can tweak this to your hearts desire)

    { "compilerOptions": { "sourceMap": true } }

The tsconfig.json file controls TypeScript-related options so that your IDE, the tsc command, and this loader all share the same options.

devtool / sourcemaps

If you want to be able to debug your original source then you can thanks to the magic of sourcemaps. There are 2 steps to getting this set up with ts-loader and webpack.

First, for ts-loader to produce sourcemaps, you will need to set the tsconfig.json option as "sourceMap": true.

Second, you need to set the devtool option in your webpack.config.js to support the type of sourcemaps you want. To make your choice have a read of the devtool webpack docs. You may be somewhat daunted by the choice available. You may also want to vary the sourcemap strategy depending on your build environment. Here are some example strategies for different environments:

  • devtool: 'inline-source-map' - Solid sourcemap support; the best "all-rounder". Works well with karma-webpack (not all strategies do)
  • devtool: 'eval-cheap-module-source-map' - Best support for sourcemaps whilst debugging.
  • devtool: 'source-map' - Approach that plays well with UglifyJsPlugin; typically you might use this in Production

Code Splitting and Loading Other Resources

Loading css and other resources is possible but you will need to make sure that you have defined the require function in a declaration file.

declare var require: { <T>(path: string): T; (paths: string[], callback: (...modules: any[]) => void): void; ensure: ( paths: string[], callback: (require: <T>(path: string) => T) => void ) => void; };

Then you can simply require assets or chunks per the webpack documentation.

require("!style!css!./style.css");

The same basic process is required for code splitting. In this case, you import modules you need but you don't directly use them. Instead you require them at split points. See this example and this example for more details.

TypeScript 2.4 provides support for ECMAScript's new import() calls. These calls import a module and return a promise to that module. This is also supported in webpack - details on usage can be found here. Happy code splitting!

Declaration Files (.d.ts)

To output declaration files (.d.ts), you can set "declaration": true in your tsconfig and set "transpileOnly" to false.

If you use ts-loader with "transpileOnly": true along with fork-ts-checker-webpack-plugin, you will need to configure fork-ts-checker-webpack-plugin to output definition files, you can learn more on the plugin's documentation page: https://github.com/TypeStrong/fork-ts-checker-webpack-plugin#typescript-options

To output a built .d.ts file, you can use the DeclarationBundlerPlugin in your webpack config.

Failing the build on TypeScript compilation error

The build should fail on TypeScript compilation errors as of webpack 2. If for some reason it does not, you can use the webpack-fail-plugin.

For more background have a read of this issue.

baseUrl / paths module resolution

If you want to resolve modules according to baseUrl and paths in your tsconfig.json then you can use the tsconfig-paths-webpack-plugin package. For details about this functionality, see the module resolution documentation.

This feature requires webpack 2.1+ and TypeScript 2.0+. Use the config below or check the package for more information on usage.

const TsconfigPathsPlugin = require('tsconfig-paths-webpack-plugin'); module.exports = { ... resolve: { plugins: [new TsconfigPathsPlugin({ configFile: "./path/to/tsconfig.json" })] } ... }

Options

There are two types of options: TypeScript options (aka "compiler options") and loader options. TypeScript options should be set using a tsconfig.json file. Loader options can be specified through the options property in the webpack configuration:

module.exports = { ... module: { rules: [ { test: /\.tsx?$/, use: [ { loader: 'ts-loader', options: { transpileOnly: true } } ] } ] } }

Loader Options

transpileOnly

TypeDefault Value
booleanfalse

If you want to speed up compilation significantly you can set this flag. However, many of the benefits you get from static type checking between different dependencies in your application will be lost. transpileOnly will not speed up compilation of project references.

It's advisable to use transpileOnly alongside the fork-ts-checker-webpack-plugin to get full type checking again. To see what this looks like in practice then either take a look at our example.

Tip: When you add the fork-ts-checker-webpack-plugin to your webpack config, the transpileOnly will default to true, so you can skip that option.

If you enable this option, webpack 4 will give you "export not found" warnings any time you re-export a type:

WARNING in ./src/bar.ts
1:0-34 "export 'IFoo' was not found in './foo'
 @ ./src/bar.ts
 @ ./src/index.ts

The reason this happens is that when typescript doesn't do a full type check, it does not have enough information to determine whether an imported name is a type or not, so when the name is then exported, typescript has no choice but to emit the export. Fortunately, the extraneous export should not be harmful, so you can just suppress these warnings:

module.exports = { ... stats: { warningsFilter: /export .* was not found in/ } }

happyPackMode

TypeDefault Value
booleanfalse

If you're using HappyPack or thread-loader to parallelise your builds then you'll need to set this to true. This implicitly sets *transpileOnly* to true and WARNING! stops registering all errors to webpack.

It's advisable to use this with the fork-ts-checker-webpack-plugin to get full type checking again. IMPORTANT: If you are using fork-ts-checker-webpack-plugin alongside HappyPack or thread-loader then ensure you set the syntactic diagnostic option like so:

new ForkTsCheckerWebpackPlugin({ typescript: { diagnosticOptions: { semantic: true, syntactic: true, }, }, })

This will ensure that the plugin checks for both syntactic errors (eg const array = [{} {}];) and semantic errors (eg const x: number = '1';). By default the plugin only checks for semantic errors (as when used with ts-loader in transpileOnly mode, ts-loader will still report syntactic errors).

Also, if you are using thread-loader in watch mode, remember to set poolTimeout: Infinity so workers don't die.

resolveModuleName and resolveTypeReferenceDirective

These options should be functions which will be used to resolve the import statements and the <reference types="..."> directives instead of the default TypeScript implementation. It's not intended that these will typically be used by a user of ts-loader - they exist to facilitate functionality such as Yarn Plug’n’Play.

getCustomTransformers

Type
(program: Program, getProgram: () => Program) => { before?: TransformerFactory<SourceFile>[]; after?: TransformerFactory<SourceFile>[]; afterDeclarations?: TransformerFactory<SourceFile>[]; }

Provide custom transformers - only compatible with TypeScript 2.3+ (and 2.4 if using transpileOnly mode). For example usage take a look at typescript-plugin-styled-components or our test.

You can also pass

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多