This package was developed during the writing of our PatternRank paper. You can check out the paper here. When using KeyphraseVectorizers or PatternRank in academic papers and theses, please use the BibTeX entry below.
Set of vectorizers that extract keyphrases with part-of-speech patterns from a collection of text documents and convert them into a document-keyphrase matrix. A document-keyphrase matrix is a mathematical matrix that describes the frequency of keyphrases that occur in a collection of documents. The matrix rows indicate the text documents and columns indicate the unique keyphrases.
The package contains wrappers of the sklearn.feature_extraction.text.CountVectorizer and sklearn.feature_extraction.text.TfidfVectorizer classes. Instead of using n-gram tokens of a pre-defined range, these classes extract keyphrases from text documents using part-of-speech tags to compute document-keyphrase matrices.
Corresponding medium posts can be found here and here.
<a name="toc"/></a>
<a name="#how-does-it-work"/></a>
First, the document texts are annotated with spaCy part-of-speech tags. A list of
all possible spaCy part-of-speech tags for different languages is
linked here. The annotation
requires passing the spaCy pipeline of the corresponding language
to the vectorizer with the spacy_pipeline
parameter.
Second, words are extracted from the document texts whose part-of-speech tags match the regex pattern defined in
the pos_pattern
parameter. The keyphrases are a list of unique words extracted from text documents by this method.
Finally, the vectorizers calculate document-keyphrase matrices.
<a name="#installation"/></a>
pip install keyphrase-vectorizers
<a name="#usage"/></a>
For detailed information visit the API Guide.
<a name="#keyphrasecountvectorizer"/></a>
<a name="#english-language"/></a>
from keyphrase_vectorizers import KeyphraseCountVectorizer docs = ["""Supervised learning is the machine learning task of learning a function that maps an input to an output based on example input-output pairs. It infers a function from labeled training data consisting of a set of training examples. In supervised learning, each example is a pair consisting of an input object (typically a vector) and a desired output value (also called the supervisory signal). A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for mapping new examples. An optimal scenario will allow for the algorithm to correctly determine the class labels for unseen instances. This requires the learning algorithm to generalize from the training data to unseen situations in a 'reasonable' way (see inductive bias).""", """Keywords are defined as phrases that capture the main topics discussed in a document. As they offer a brief yet precise summary of document content, they can be utilized for various applications. In an information retrieval environment, they serve as an indication of document relevance for users, as the list of keywords can quickly help to determine whether a given document is relevant to their interest. As keywords reflect a document's main topics, they can be utilized to classify documents into groups by measuring the overlap between the keywords assigned to them. Keywords are also used proactively in information retrieval."""] # Init default vectorizer. vectorizer = KeyphraseCountVectorizer() # Print parameters print(vectorizer.get_params()) >>> {'binary': False, 'dtype': <class 'numpy.int64'>, 'lowercase': True, 'max_df': None, 'min_df': None, 'pos_pattern': '<J.*>*<N.*>+', 'spacy_exclude': ['parser', 'attribute_ruler', 'lemmatizer', 'ner'], 'spacy_pipeline': 'en_core_web_sm', 'stop_words': 'english', 'workers': 1}
By default, the vectorizer is initialized for the English language. That means, an English spacy_pipeline
is
specified, English stop_words
are removed, and the pos_pattern
extracts keywords that have 0 or more adjectives,
followed by 1 or more nouns using the English spaCy part-of-speech tags. In addition, the spaCy pipeline
components ['parser', 'attribute_ruler', 'lemmatizer', 'ner']
are excluded by default to increase efficiency. If you
choose a different spacy_pipeline
, you may have to exclude/include different pipeline components using
the spacy_exclude
parameter for the spaCy POS
tagger to work properly.
# After initializing the vectorizer, it can be fitted # to learn the keyphrases from the text documents. vectorizer.fit(docs)
# After learning the keyphrases, they can be returned. keyphrases = vectorizer.get_feature_names_out() print(keyphrases) >>> ['users' 'main topics' 'learning algorithm' 'overlap' 'documents' 'output' 'keywords' 'precise summary' 'new examples' 'training data' 'input' 'document content' 'training examples' 'unseen instances' 'optimal scenario' 'document' 'task' 'supervised learning algorithm' 'example' 'interest' 'function' 'example input' 'various applications' 'unseen situations' 'phrases' 'indication' 'inductive bias' 'supervisory signal' 'document relevance' 'information retrieval' 'set' 'input object' 'groups' 'output value' 'list' 'learning' 'output pairs' 'pair' 'class labels' 'supervised learning' 'machine' 'information retrieval environment' 'algorithm' 'vector' 'way']
# After fitting, the vectorizer can transform the documents # to a document-keyphrase matrix. # Matrix rows indicate the documents and columns indicate the unique keyphrases. # Each cell represents the count. document_keyphrase_matrix = vectorizer.transform(docs).toarray() print(document_keyphrase_matrix) >>> [[0 0 2 0 0 3 0 0 1 3 3 0 1 1 1 0 1 1 2 0 3 1 0 1 0 0 1 1 0 0 1 1 0 1 0 6 1 1 1 3 1 0 3 1 1] [1 2 0 1 1 0 5 1 0 0 0 1 0 0 0 5 0 0 0 1 0 0 1 0 1 1 0 0 1 2 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0]]
# Fit and transform can also be executed in one step, # which is more efficient. document_keyphrase_matrix = vectorizer.fit_transform(docs).toarray() print(document_keyphrase_matrix) >>> [[0 0 2 0 0 3 0 0 1 3 3 0 1 1 1 0 1 1 2 0 3 1 0 1 0 0 1 1 0 0 1 1 0 1 0 6 1 1 1 3 1 0 3 1 1] [1 2 0 1 1 0 5 1 0 0 0 1 0 0 0 5 0 0 0 1 0 0 1 0 1 1 0 0 1 2 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0]]
<a name="#other-languages"/></a>
german_docs = ["""Goethe stammte aus einer angesehenen bürgerlichen Familie. Sein Großvater mütterlicherseits war als Stadtschultheiß höchster Justizbeamter der Stadt Frankfurt, sein Vater Doktor der Rechte und Kaiserlicher Rat. Er und seine Schwester Cornelia erfuhren eine aufwendige Ausbildung durch Hauslehrer. Dem Wunsch seines Vaters folgend, studierte Goethe in Leipzig und Straßburg Rechtswissenschaft und war danach als Advokat in Wetzlar und Frankfurt tätig. Gleichzeitig folgte er seiner Neigung zur Dichtkunst.""", """Friedrich Schiller wurde als zweites Kind des Offiziers, Wundarztes und Leiters der Hofgärtnerei in Marbach am Neckar Johann Kaspar Schiller und dessen Ehefrau Elisabetha Dorothea Schiller, geb. Kodweiß, die Tochter eines Wirtes und Bäckers war, 1759 in Marbach am Neckar geboren """] # Init vectorizer for the german language vectorizer = KeyphraseCountVectorizer(spacy_pipeline='de_core_news_sm', pos_pattern='<ADJ.*>*<N.*>+', stop_words='german')
The German spacy_pipeline
is specified and German stop_words
are removed. Because the German spaCy part-of-speech
tags differ from the English ones, the pos_pattern
parameter is also customized. The regex pattern <ADJ.*>*<N.*>+
extracts keywords that have 0 or more adjectives, followed by 1 or more nouns using the German spaCy part-of-speech
tags.
Attention! The spaCy pipeline components ['parser', 'attribute_ruler', 'lemmatizer', 'ner']
are excluded by
default to increase efficiency. If you choose a different spacy_pipeline
, you may have to exclude/include different
pipeline components using the spacy_exclude
parameter for the spaCy POS tagger to work properly.
<a name="#keyphrasetfidfvectorizer"/></a>
The KeyphraseTfidfVectorizer
has the same function calls and features as the KeyphraseCountVectorizer
. The only
difference is, that document-keyphrase matrix cells represent tf or tf-idf values, depending on the parameter settings,
instead of counts.
from keyphrase_vectorizers import KeyphraseTfidfVectorizer docs = ["""Supervised learning is the machine learning task of learning a function that maps an input to an output based on example input-output pairs. It infers a function from labeled training data consisting of a set of training examples. In supervised learning, each example is a pair consisting of an input object (typically a vector) and a desired output value (also called the supervisory signal). A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for mapping new examples. An optimal scenario will allow for the algorithm to correctly determine the class labels for unseen instances. This requires the learning algorithm to generalize from the training data to unseen situations in a 'reasonable' way (see inductive bias).""", """Keywords are defined as phrases that capture the main topics discussed in a document. As they offer a brief yet precise summary of document content, they can be utilized for various applications. In an information retrieval environment, they serve as an indication of document relevance for users, as the list of keywords can quickly help to determine whether a given document is relevant to their interest. As keywords reflect a document's main topics, they can be utilized to classify documents into groups by measuring the overlap between the keywords assigned to them. Keywords are also used proactively in information retrieval."""] # Init default vectorizer for the English language that computes tf-idf values vectorizer = KeyphraseTfidfVectorizer() # Print parameters print(vectorizer.get_params()) >>> {'binary': False, 'custom_pos_tagger': None, 'decay': None, 'delete_min_df': None, 'dtype': < class 'numpy.int64'>, 'lowercase': True, 'max_df': None , 'min_df': None, 'pos_pattern': '<J.*>*<N.*>+', 'spacy_exclude': ['parser', 'attribute_ruler', 'lemmatizer', 'ner', 'textcat'], 'spacy_pipeline': 'en_core_web_sm', 'stop_words': 'english', 'workers': 1}
To calculate tf values instead, set use_idf=False
.
# Fit and transform to document-keyphrase matrix. document_keyphrase_matrix = vectorizer.fit_transform(docs).toarray() print(document_keyphrase_matrix) >>> [[0. 0. 0.09245003 0.09245003 0.09245003 0.09245003 0.2773501 0.09245003 0.2773501 0.2773501 0.09245003 0. 0. 0.09245003 0. 0.2773501 0.09245003 0.09245003 0. 0.09245003 0.09245003 0.09245003 0.09245003 0.09245003 0.5547002 0. 0. 0.09245003 0.09245003 0. 0.2773501 0.18490007 0.09245003 0. 0.2773501 0. 0. 0.09245003 0. 0.09245003 0. 0. 0. 0.18490007 0. ] [0.11867817 0.11867817 0. 0. 0. 0. 0. 0. 0. 0. 0.
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据 需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
最新AI工具、AI资讯
独家AI 资源、AI项目落地
微信扫一扫关注公众号