This package was developed during the writing of our PatternRank paper. You can check out the paper here. When using KeyphraseVectorizers or PatternRank in academic papers and theses, please use the BibTeX entry below.
Set of vectorizers that extract keyphrases with part-of-speech patterns from a collection of text documents and convert them into a document-keyphrase matrix. A document-keyphrase matrix is a mathematical matrix that describes the frequency of keyphrases that occur in a collection of documents. The matrix rows indicate the text documents and columns indicate the unique keyphrases.
The package contains wrappers of the sklearn.feature_extraction.text.CountVectorizer and sklearn.feature_extraction.text.TfidfVectorizer classes. Instead of using n-gram tokens of a pre-defined range, these classes extract keyphrases from text documents using part-of-speech tags to compute document-keyphrase matrices.
Corresponding medium posts can be found here and here.
<a name="toc"/></a>
<a name="#how-does-it-work"/></a>
First, the document texts are annotated with spaCy part-of-speech tags. A list of
all possible spaCy part-of-speech tags for different languages is
linked here. The annotation
requires passing the spaCy pipeline of the corresponding language
to the vectorizer with the spacy_pipeline parameter.
Second, words are extracted from the document texts whose part-of-speech tags match the regex pattern defined in
the pos_pattern
parameter. The keyphrases are a list of unique words extracted from text documents by this method.
Finally, the vectorizers calculate document-keyphrase matrices.
<a name="#installation"/></a>
pip install keyphrase-vectorizers
<a name="#usage"/></a>
For detailed information visit the API Guide.
<a name="#keyphrasecountvectorizer"/></a>
<a name="#english-language"/></a>
from keyphrase_vectorizers import KeyphraseCountVectorizer docs = ["""Supervised learning is the machine learning task of learning a function that maps an input to an output based on example input-output pairs. It infers a function from labeled training data consisting of a set of training examples. In supervised learning, each example is a pair consisting of an input object (typically a vector) and a desired output value (also called the supervisory signal). A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for mapping new examples. An optimal scenario will allow for the algorithm to correctly determine the class labels for unseen instances. This requires the learning algorithm to generalize from the training data to unseen situations in a 'reasonable' way (see inductive bias).""", """Keywords are defined as phrases that capture the main topics discussed in a document. As they offer a brief yet precise summary of document content, they can be utilized for various applications. In an information retrieval environment, they serve as an indication of document relevance for users, as the list of keywords can quickly help to determine whether a given document is relevant to their interest. As keywords reflect a document's main topics, they can be utilized to classify documents into groups by measuring the overlap between the keywords assigned to them. Keywords are also used proactively in information retrieval."""] # Init default vectorizer. vectorizer = KeyphraseCountVectorizer() # Print parameters print(vectorizer.get_params()) >>> {'binary': False, 'dtype': <class 'numpy.int64'>, 'lowercase': True, 'max_df': None, 'min_df': None, 'pos_pattern': '<J.*>*<N.*>+', 'spacy_exclude': ['parser', 'attribute_ruler', 'lemmatizer', 'ner'], 'spacy_pipeline': 'en_core_web_sm', 'stop_words': 'english', 'workers': 1}
By default, the vectorizer is initialized for the English language. That means, an English spacy_pipeline is
specified, English stop_words are removed, and the pos_pattern extracts keywords that have 0 or more adjectives,
followed by 1 or more nouns using the English spaCy part-of-speech tags. In addition, the spaCy pipeline
components ['parser', 'attribute_ruler', 'lemmatizer', 'ner'] are excluded by default to increase efficiency. If you
choose a different spacy_pipeline, you may have to exclude/include different pipeline components using
the spacy_exclude parameter for the spaCy POS
tagger to work properly.
# After initializing the vectorizer, it can be fitted # to learn the keyphrases from the text documents. vectorizer.fit(docs)
# After learning the keyphrases, they can be returned. keyphrases = vectorizer.get_feature_names_out() print(keyphrases) >>> ['users' 'main topics' 'learning algorithm' 'overlap' 'documents' 'output' 'keywords' 'precise summary' 'new examples' 'training data' 'input' 'document content' 'training examples' 'unseen instances' 'optimal scenario' 'document' 'task' 'supervised learning algorithm' 'example' 'interest' 'function' 'example input' 'various applications' 'unseen situations' 'phrases' 'indication' 'inductive bias' 'supervisory signal' 'document relevance' 'information retrieval' 'set' 'input object' 'groups' 'output value' 'list' 'learning' 'output pairs' 'pair' 'class labels' 'supervised learning' 'machine' 'information retrieval environment' 'algorithm' 'vector' 'way']
# After fitting, the vectorizer can transform the documents # to a document-keyphrase matrix. # Matrix rows indicate the documents and columns indicate the unique keyphrases. # Each cell represents the count. document_keyphrase_matrix = vectorizer.transform(docs).toarray() print(document_keyphrase_matrix) >>> [[0 0 2 0 0 3 0 0 1 3 3 0 1 1 1 0 1 1 2 0 3 1 0 1 0 0 1 1 0 0 1 1 0 1 0 6 1 1 1 3 1 0 3 1 1] [1 2 0 1 1 0 5 1 0 0 0 1 0 0 0 5 0 0 0 1 0 0 1 0 1 1 0 0 1 2 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0]]
# Fit and transform can also be executed in one step, # which is more efficient. document_keyphrase_matrix = vectorizer.fit_transform(docs).toarray() print(document_keyphrase_matrix) >>> [[0 0 2 0 0 3 0 0 1 3 3 0 1 1 1 0 1 1 2 0 3 1 0 1 0 0 1 1 0 0 1 1 0 1 0 6 1 1 1 3 1 0 3 1 1] [1 2 0 1 1 0 5 1 0 0 0 1 0 0 0 5 0 0 0 1 0 0 1 0 1 1 0 0 1 2 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0]]
<a name="#other-languages"/></a>
german_docs = ["""Goethe stammte aus einer angesehenen bürgerlichen Familie. Sein Großvater mütterlicherseits war als Stadtschultheiß höchster Justizbeamter der Stadt Frankfurt, sein Vater Doktor der Rechte und Kaiserlicher Rat. Er und seine Schwester Cornelia erfuhren eine aufwendige Ausbildung durch Hauslehrer. Dem Wunsch seines Vaters folgend, studierte Goethe in Leipzig und Straßburg Rechtswissenschaft und war danach als Advokat in Wetzlar und Frankfurt tätig. Gleichzeitig folgte er seiner Neigung zur Dichtkunst.""", """Friedrich Schiller wurde als zweites Kind des Offiziers, Wundarztes und Leiters der Hofgärtnerei in Marbach am Neckar Johann Kaspar Schiller und dessen Ehefrau Elisabetha Dorothea Schiller, geb. Kodweiß, die Tochter eines Wirtes und Bäckers war, 1759 in Marbach am Neckar geboren """] # Init vectorizer for the german language vectorizer = KeyphraseCountVectorizer(spacy_pipeline='de_core_news_sm', pos_pattern='<ADJ.*>*<N.*>+', stop_words='german')
The German spacy_pipeline is specified and German stop_words are removed. Because the German spaCy part-of-speech
tags differ from the English ones, the pos_pattern parameter is also customized. The regex pattern <ADJ.*>*<N.*>+
extracts keywords that have 0 or more adjectives, followed by 1 or more nouns using the German spaCy part-of-speech
tags.
Attention! The spaCy pipeline components ['parser', 'attribute_ruler', 'lemmatizer', 'ner'] are excluded by
default to increase efficiency. If you choose a different spacy_pipeline, you may have to exclude/include different
pipeline components using the spacy_exclude parameter for the spaCy POS tagger to work properly.
<a name="#keyphrasetfidfvectorizer"/></a>
The KeyphraseTfidfVectorizer has the same function calls and features as the KeyphraseCountVectorizer. The only
difference is, that document-keyphrase matrix cells represent tf or tf-idf values, depending on the parameter settings,
instead of counts.
from keyphrase_vectorizers import KeyphraseTfidfVectorizer docs = ["""Supervised learning is the machine learning task of learning a function that maps an input to an output based on example input-output pairs. It infers a function from labeled training data consisting of a set of training examples. In supervised learning, each example is a pair consisting of an input object (typically a vector) and a desired output value (also called the supervisory signal). A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for mapping new examples. An optimal scenario will allow for the algorithm to correctly determine the class labels for unseen instances. This requires the learning algorithm to generalize from the training data to unseen situations in a 'reasonable' way (see inductive bias).""", """Keywords are defined as phrases that capture the main topics discussed in a document. As they offer a brief yet precise summary of document content, they can be utilized for various applications. In an information retrieval environment, they serve as an indication of document relevance for users, as the list of keywords can quickly help to determine whether a given document is relevant to their interest. As keywords reflect a document's main topics, they can be utilized to classify documents into groups by measuring the overlap between the keywords assigned to them. Keywords are also used proactively in information retrieval."""] # Init default vectorizer for the English language that computes tf-idf values vectorizer = KeyphraseTfidfVectorizer() # Print parameters print(vectorizer.get_params()) >>> {'binary': False, 'custom_pos_tagger': None, 'decay': None, 'delete_min_df': None, 'dtype': < class 'numpy.int64'>, 'lowercase': True, 'max_df': None , 'min_df': None, 'pos_pattern': '<J.*>*<N.*>+', 'spacy_exclude': ['parser', 'attribute_ruler', 'lemmatizer', 'ner', 'textcat'], 'spacy_pipeline': 'en_core_web_sm', 'stop_words': 'english', 'workers': 1}
To calculate tf values instead, set use_idf=False.
# Fit and transform to document-keyphrase matrix. document_keyphrase_matrix = vectorizer.fit_transform(docs).toarray() print(document_keyphrase_matrix) >>> [[0. 0. 0.09245003 0.09245003 0.09245003 0.09245003 0.2773501 0.09245003 0.2773501 0.2773501 0.09245003 0. 0. 0.09245003 0. 0.2773501 0.09245003 0.09245003 0. 0.09245003 0.09245003 0.09245003 0.09245003 0.09245003 0.5547002 0. 0. 0.09245003 0.09245003 0. 0.2773501 0.18490007 0.09245003 0. 0.2773501 0. 0. 0.09245003 0. 0.09245003 0. 0. 0. 0.18490007 0. ] [0.11867817 0.11867817 0. 0. 0. 0. 0. 0. 0. 0. 0.


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模 型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号