Tao Wang,Kaihao Zhang,Tianrun Shen,Wenhan Luo,Bjorn Stenger,Tong Lu
摘要: 随着光学传感器质量的提高,处理大规模图像的需求日益增长。特别是设备捕捉超高清(UHD)图像和视频的能力对图像处理流程提出了新的要求。 在本文中,我们考虑了低光图像增强(LLIE)任务,并引入了一个由4K和8K分辨率图像组成的大规模数据库。我们进行了系统的基准测试研究,并对当前的LLIE 算法进行了比较。作为第二个贡献,我们引入了LLFormer,一种基于transformer的低光增强方法。LLFormer的核心组件是基于轴的多头自注意力和跨层注意力融合块,显著 将复杂度降低到线性水平。在新数据集以及现有公开数据集上的大量实验表明,LLFormer的性能优于最先进的方法。我们还表明,使用在我们的基准上训练的现有LLIE方法作为 预处理步骤显著提高了下游任务的性能,例如在低光条件下的人脸检测。源代码和预训练模型可在https://github.com/TaoWangzj/LLFormer获取。
本仓库包含我们论文的数据集、代码和预训练模型。请参考我们的项目页面以快速了解项目概况。

我们创建了一个新的大规模UHD-LLIE数据集,称为UHDLOL,用于对现有LLIE方法的性能进行基准测试并探索UHD-LLIE问题。它由两个子集组成:UHD-LOL4K和UHD-LOL8K。UHD-LOL4K子集包含8,099对4K低光/正常光图像。其中,5,999对图像用于训练,2,100对用于测试。UHD-LOL8K子集包括2,966对8K低光/正常光图像,分为2,029对用于训练,937对用于测试。更多详情请参考我们的项目页面。
我们提出了一种新的基于transformer的UHD-LLIE方法。LLFormer的核心设计包括一个基于轴的transformer块和一个跨层注意力融合块。在前者中,基于轴的多头自注意力机制在通道维度上沿高度和宽度轴依次执行自注意力,以降低计算复杂度,而双门控前馈网络采用门控机制更关注有用的特征。跨层注意力融合块在融合不同层特征时学习注意力权重。


conda create -n LLFormer python=3.7
conda activate LLFormer
conda install pytorch=1.8 torchvision=0.3 cudatoolkit=10.1 -c pytorch
pip install matplotlib scikit-image opencv-python yacs joblib natsort h5py tqdm
git clone https://github.com/TaoWangzj/LLFormer.git
cd LLFormer
cd pytorch-gradual-warmup-lr; python setup.py install; cd ..
您可以使用以下链接下载数据集
我们提供了在不同数据集上预训练的模型:
在UHD-LOL4K上训练的LLFormer [Google云端硬盘 | 百度网盘],使用训练配置文件 ./configs/UHD-LOL4K/train/training_UHD_4K.yaml。
在UHD-LOL8K上训练的LLFormer [Google云端硬盘 | 百度网盘],使用训练配置文件 ./configs/UHD-LOL8K/train/training_UHD_8K.yaml。
在LOL数据集上训练的LLFormer [Google drive | 百度网盘],使用训练配置文件 ./configs/LOL/train/training_LOL.yaml
在MIT-Adobe FiveK数据集上训练的LLFormer [Google drive | 百度网盘],使用训练配置文件 ./configs/MIT-Adobe-FiveK/train/training_MIT_5K.yaml。
我们提供了表2中所有现有方法在LOL和MIT-Adobe FiveK数据集上的视觉结果
您可以按如下方式直接测试预训练模型
# 测试参数 input_dir # 数据路径 result_dir # 结果保存路径 weights # 预训练模型的权重路径
您需要指定数据路径 input_dir、result_dir 和模型路径 weight_path。然后运行
python test.py --input_dir 您的数据路径 --result_dir 您的保存路径 --weights 权重路径
您需要指定数据路径 input_dir、result_dir 和模型路径 weight_path。然后运行
python test_UHD.py --input_dir 您的数据路径 --result_dir 您的保存路径 --weights 权重路径
(由于GPU内存限制,我们建议用户对UHD图像使用基于patch的模式进行测试)
下载UHD-LOL训练和测试数据
从UHD-LOL数据集的全分辨率训练图像中生成图像patch
python scripts/extract_subimages_UHD.py
python train.py -yml_path 您的配置路径
您需要修改配置以适应您自己的训练环境
如果UHDLOL基准和LLFormer对您的研究或工作有帮助,请考虑引用:
@inproceedings{wang2023ultra,
title={Ultra-high-definition low-light image enhancement: A benchmark and transformer-based method},
author={Wang, Tao and Zhang, Kaihao and Shen, Tianrun and Luo, Wenhan and Stenger, Bjorn and Lu, Tong},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={37},
number={3},
pages={2654--2662},
year={2023}
}
@inproceedings{zhang2021benchmarking,
title={Benchmarking ultra-high-definition image super-resolution},
author={Zhang, Kaihao and Li, Dongxu and Luo, Wenhan and Ren, Wenqi and Stenger, Bjorn and Liu, Wei and Li, Hongdong and Yang, Ming-Hsuan},
booktitle={ICCV},
pages={14769--14778},
year={2021}
}
如果您有任何问题,请联系taowangzj@gmail.com
本实现基于以下项目或受其启发:


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。


一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作


AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号