
多语言支持与长文本处理能力
GLM-4-9B系列是智谱AI推出的开源预训练模型,包括基础版、支持128K上下文的Chat版、1M长文本版及多模态版。该系列支持26种语言,在语义理解、数学计算、逻辑推理等多项评测中表现优异。GLM-4-9B-Chat具备网页浏览、代码执行等功能,GLM-4V-9B则增加了视觉理解能力。这些模型在多项基准测试中均超越了同规模竞品。
阅读英文版
2024/08/15: 我们开源了具备长文本输出能力(单轮对话大模型输出可超过1万token)的模型 longwriter-glm4-9b以及数据集 LongWriter-6k,欢迎在 Huggingface Space或 魔搭社区空间 在线体验。2024/08/12: GLM-4-9B-Chat 模型依赖的transformers版本升级到 4.44.0,请重新拉取除模型权重(*.safetensor 文件和 tokenizer.model)外的文件并参考 basic_demo/requirements.txt 严格更新依赖。2024/07/24: 我们发布了与长文本相关的最新技术解读,关注 这里 查看我们在训练 GLM-4-9B 开源模型中关于长文本技术的技术报告。2024/7/16: GLM-4-9B-Chat 模型依赖的transformers版本升级到 4.42.4,请更新模型配置文件并参考 basic_demo/requirements.txt 更新依赖。2024/7/9: GLM-4-9B-Chat 模型已适配 Ollama,Llama.cpp,您可以在PR 查看具体的细节。2024/7/1: 我们更新了 GLM-4V-9B 的微调,您需要更新我们的模型仓库的运行文件和配置文件,以支持 这个功能,更多微调细节(例如数据集格式,显存要求),请前往 查看。2024/6/28: 我们与英特尔技术团队合作,改进了 GLM-4-9B-Chat 的 ITREX 和 OpenVINO 部署教程。您可以使用英特尔 CPU/GPU 设备高效部署 GLM-4-9B 开源模型。欢迎访问 查看。2024/6/24: 我们更新了模型仓库的运行文件和配置文件,支持 Flash Attention 2,请更新模型配置文件并参考 basic_demo/trans_cli_demo.py 中的示例代码。2024/6/19: 我们更新了模型仓库的运行文件和配置文件,修复了部分已知的模型推理的问题,欢迎大家克隆最新的模型仓库。2024/6/18: 我们发布 技术报告,欢迎查看。2024/6/05: 我们发布 GLM-4-9B 系列开源模型GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。在语义、数学、推理、代码和知识等多方面的数据集测评中,GLM-4-9B 及其人类偏好对齐的版本 GLM-4-9B-Chat 均表现出超越 Llama-3-8B 的卓越性能。除了能进行多轮对话,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K 上下文)等高级功能。本代模型增加了多语言支持,支持包括日语,韩语,德语在内的 26 种语言。我们还推出了支持 1M 上下文长度(约 200 万中文字符)的 GLM-4-9B-Chat-1M 模型和基于 GLM-4-9B 的多模态模型 GLM-4V-9B。GLM-4V-9B 具备 1120 * 1120 高分辨率下的中英双语多轮对话能力, 在中英文综合能力、感知推理、文字识别、图表理解等多方面多模态评测中,GLM-4V-9B 表现出超越 GPT-4-turbo-2024-04-09、Gemini 1.0 Pro、Qwen-VL-Max 和 Claude 3 Opus 的卓越性能。
| 模型 | 类型 | 序列长度 | 下载链接 | 在线演示 |
|---|---|---|---|---|
| GLM-4-9B | 基础 | 8K | 🤗 Huggingface 🤖 ModelScope 🟣 WiseModel | / |
| GLM-4-9B-Chat | 对话 | 128K | 🤗 Huggingface 🤖 ModelScope 🟣 WiseModel | 🤖 ModelScope CPU<br> 🤖 ModelScope vLLM |
| GLM-4-9B-Chat-1M | 对话 | 1M | 🤗 Huggingface 🤖 ModelScope 🟣 WiseModel | / |
| GLM-4V-9B | 对话 | 8K | 🤗 Huggingface 🤖 ModelScope 🟣 WiseModel | 🤖 ModelScope |
| 模型 | AlignBench | MT-Bench | IFEval | MMLU | C-Eval | GSM8K | MATH | HumanEval | NaturalCodeBench |
|---|---|---|---|---|---|---|---|---|---|
| Llama-3-8B-Instruct | 6.40 | 8.00 | 68.6 | 68.4 | 51.3 | 79.6 | 30.0 | 62.2 | 24.7 |
| ChatGLM3-6B | 5.18 | 5.50 | 28.1 | 61.4 | 69.0 | 72.3 | 25.7 | 58.5 | 11.3 |
| GLM-4-9B-Chat | 7.01 | 8.35 | 69.0 | 72.4 | 75.6 | 79.6 | 50.6 | 71.8 | 32.2 |
| 模型 | MMLU | C-Eval | GPQA | GSM8K | MATH | HumanEval |
|---|---|---|---|---|---|---|
| Llama-3-8B | 66.6 | 51.2 | - | 45.8 | - | 33.5 |
| Llama-3-8B-Instruct | 68.4 | 51.3 | 34.2 | 79.6 | 30.0 | 62.2 |
| ChatGLM3-6B-Base | 61.4 | 69.0 | 26.8 | 72.3 | 25.7 | 58.5 |
| GLM-4-9B | 74.7 | 77.1 | 34.3 | 84.0 | 30.4 | 70.1 |
由于
GLM-4-9B在预训练过程中加入了部分数学、推理、代码相关的指令数据,因此我们也将 Llama-3-8B-Instruct 列入比较范围。
在 1M 的上下文长度下进行大海捞针实验,结果如下:

在 LongBench-Chat 上对长文本能力进行了进一步评测,结果如下:
<p align="center"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/2245cb52-94ec-41df-ad57-a21f4aac7990.png" alt="描述文字" style="display: block; margin: auto; width: 65%;"> </p>我们在六个多语言数据集上对 GLM-4-9B-Chat 和 Llama-3-8B-Instruct 进行了测试,测试结果及数据集对应选取语言如下表所示:
| 数据集 | Llama-3-8B-Instruct | GLM-4-9B-Chat | 语言 |
|---|---|---|---|
| M-MMLU | 49.6 | 56.6 | 全部 |
| FLORES | 25.0 | 28.8 | 俄、西、德、法、意、葡、波、日、荷、阿、土、捷、越、波、匈、希、罗、瑞、乌、芬、韩、丹、保、挪 |
| MGSM | 54.0 | 65.3 | 中、英、孟、德、西、法、日、俄、斯瓦、泰卢固、泰 |
| XWinograd | 61.7 | 73.1 | 中、英、法、日、俄、葡 |
| XStoryCloze | 84.7 | 90.7 | 中、英、阿、西、巴斯克、印地、印尼、缅、俄、斯瓦、泰卢固 |
| XCOPA | 73.3 | 80.1 | 中、爱沙、海地、印尼、意、克丘亚、斯瓦、泰米尔、泰、土、越 |
我们在 Berkeley Function Calling Leaderboard 上进行了测试,并得到了以下结果:
| 模型 | 总体准确率 | AST 摘要 | 执行摘要 | 相关性 |
|---|---|---|---|---|
| Llama-3-8B-Instruct | 58.88 | 59.25 | 70.01 | 45.83 |
| gpt-4-turbo-2024-04-09 | 81.24 | 82.14 | 78.61 | 88.75 |
| ChatGLM3-6B | 57.88 | 62.18 | 69.78 | 5.42 |
| GLM-4-9B-Chat | 81.00 | 80.26 | 84.40 | 87.92 |
GLM-4V-9B 是一个多模态语言模型,具备视觉理解能力,其相关经典任务的评测结果如下:
| MMBench-EN-测试 | MMBench-CN-测试 | SEEDBench_IMG | MMStar | MMMU | MME | HallusionBench | AI2D | OCRBench | |
|---|---|---|---|---|---|---|---|---|---|
| gpt-4o-2024-05-13 | 83.4 | 82.1 | 77.1 | 63.9 | 69.2 | 2310.3 | 55.0 | 84.6 | 736 |
| gpt-4-turbo-2024-04-09 | 81.0 | 80.2 | 73.0 | 56.0 | 61.7 | 2070.2 | 43.9 | 78.6 | 656 |
| gpt-4-1106-preview | 77.0 | 74.4 | 72.3 | 49.7 | 53.8 | 1771.5 | 46.5 | 75.9 | 516 |
| InternVL-Chat-V1.5 | 82.3 | 80.7 | 75.2 | 57.1 | 46.8 | 2189.6 | 47.4 | 80.6 | 720 |
| LLaVA-Next-Yi-34B | 81.1 | 79.0 | 75.7 | 51.6 | 48.8 | 2050.2 | 34.8 | 78.9 | 574 |
| Step-1V | 80.7 | 79.9 | 70.3 | 50.0 | 49.9 | 2206.4 | 48.4 | 79.2 | 625 |
| MiniCPM-Llama3-V2.5 | 77.6 | 73.8 | 72.3 | 51.8 | 45.8 | 2024.6 | 42.4 | 78.4 | 725 |
| Qwen-VL-Max | 77.6 | 75.7 | 72.7 | 49.5 | 52.0 | 2281.7 | 41.2 | 75.7 | 684 |
| Gemini 1.0 Pro | 73.6 | 74.3 | 70.7 | 38.6 | 49.0 | 2148.9 | 45.7 | 72.9 | 680 |
| Claude 3 Opus | 63.3 | 59.2 | 64.0 | 45.7 | 54.9 | 1586.8 | 37.8 | 70.6 | 694 |
| GLM-4V-9B | 81.1 | 79.4 | 76.8 | 58.7 | 47.2 | 2163.8 | 46.6 | 81.1 | 786 |
硬件配置和系统要求,请查看这里。
使用 transformers 后端进行推理:
import torch from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat", trust_remote_code=True) query = "你好" inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}], add_generation_prompt=True, tokenize=True, return_tensors="pt", return_dict=True ) inputs = inputs.to(device) model = AutoModelForCausalLM.from_pretrained( "THUDM/glm-4-9b-chat", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True ).to(device).eval() gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1} with torch.no_grad(): outputs = model.generate(**inputs, **gen_kwargs) outputs = outputs[:, inputs['input_ids'].shape[1]:] print(tokenizer.decode(outputs[0], skip_special_tokens=True))
使用 vLLM 后端进行推理:
from transformers import AutoTokenizer from vllm import LLM, SamplingParams # GLM-4-9B-Chat-1M # max_model_len, tp_size = 1048576, 4 # 如果遇见 OOM 现象,建议减少max_model_len,或者增加tp_size max_model_len, tp_size = 131072, 1 model_name = "THUDM/glm-4-9b-chat" prompt = [{"role": "user", "content": "你好"}] tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) llm = LLM( model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True, # GLM-4-9B-Chat-1M 如果遇见 OOM 现象,建议开启下述参数 # enable_chunked_prefill=True, # max_num_batched_tokens=8192 ) stop_token_ids = [151329, 151336, 151338] sampling_params = SamplingParams(temperature=0.95, max_tokens=1024, stop_token_ids=stop_token_ids) inputs = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True) outputs = llm.generate(prompts=inputs, sampling_params=sampling_params) print(outputs[0].outputs[0].text)
使用 transformers 后端进行推理:
import torch from PIL import Image from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4v-9b", trust_remote_code=True) query = '描述这张图片' image = Image.open("your image").convert('RGB') inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}], add_generation_prompt=True, tokenize=True, return_tensors="pt", return_dict=True) # 聊天模式 inputs = inputs.to(device) 模型 = AutoModelForCausalLM.from_pretrained( "THUDM/glm-4v-9b", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True ).to(device).eval() 生成参数 = {"max_length": 2500, "do_sample": True, "top_k": 1} with torch.no_grad(): 输出 = 模型.generate(**inputs, **生成参数) 输出 = 输出[:, inputs['input_ids'].shape[1]:] print(tokenizer.decode(输出[0]))
注意: GLM-4V-9B 暂不支持使用 vLLM 方式调用。
如果你想更进一步了解 GLM-4-9B 系列开源模型,本开源仓库通过以下内容为开发者提供基础的 GLM-4-9B的使用和开发代码
basic_demo: 在这里包含了
composite_demo: 在这里包含了
fintune_demo: 在这里包含了
GLM-4 模型的权重的使用则需要遵循 模型协议。
本开源仓库的代码则遵循 Apache 2.0 协议。
请您严格遵循开源协议。
如果你觉得我们的工作有帮助的话,请考虑引用下列论文。
@misc{glm2024chatglm,
title={ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools},
author={Team GLM and Aohan Zeng and Bin Xu and Bowen Wang and Chenhui Zhang and Da Yin and Diego Rojas and Guanyu Feng and Hanlin Zhao and Hanyu Lai and Hao Yu and Hongning Wang and Jiadai Sun and Jiajie Zhang and Jiale Cheng and Jiayi Gui and Jie Tang and Jing Zhang and Juanzi Li and Lei Zhao and Lindong Wu and Lucen Zhong and Mingdao Liu and Minlie Huang and Peng Zhang and Qinkai Zheng and Rui Lu and Shuaiqi Duan and Shudan Zhang and Shulin Cao and Shuxun Yang and Weng Lam Tam and Wenyi Zhao and Xiao Liu and Xiao Xia and Xiaohan Zhang and Xiaotao Gu and Xin Lv and Xinghan Liu and Xinyi Liu and Xinyue Yang and Xixuan Song and Xunkai Zhang and Yifan An and Yifan Xu and Yilin Niu and Yuantao Yang and Yueyan Li and Yushi Bai and Yuxiao Dong and Zehan Qi and Zhaoyu Wang and Zhen Yang and Zhengxiao Du and Zhenyu Hou and Zihan Wang},
year={2024},
eprint={2406.12793},
archivePrefix={arXiv},
primaryClass={id='cs.CL' full_name='Computation and Language' is_active=True alt_name='cmp-lg' in_archive='cs' is_general=False description='Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.'}
}
@misc{wang2023cogvlm,
title={CogVLM: Visual Expert for Pretrained Language Models},
author={Weihan Wang and Qingsong Lv and Wenmeng Yu and Wenyi Hong and Ji Qi and Yan Wang and Junhui Ji and Zhuoyi Yang and Lei Zhao and Xixuan Song and Jiazheng Xu and Bin Xu and Juanzi Li and Yuxiao Dong and Ming Ding and Jie Tang},
year={2023},
eprint={2311.03079},
archivePrefix={arXiv},
primaryClass={cs.CV}
}


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。


一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作


AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号